18,526 research outputs found
Hydrogen adsorption and phase transitions in fullerite
Hydrogen desorption and adsorption properties of the fullerene materials C60, C70, and fullerite (a mixture of C60 and C70) were measured volumetrically using a Sievert's apparatus. Over several cycles of isotherm measurements at 77 K, the hydrogen storage capacities of one of the fullerite samples increased from an initial value of 0.4 wt % for the first cycle to a capacity of 4.4 wt % for the fourth cycle. Correspondingly, the surface area of this sample increased from 0.9 to 11 m^2/g, and there were changes in its x-ray powder diffraction pattern. In comparison, two other fullerite samples, prepared by a different procedure showed no such behavior. Pure C60 and pure C70 were also cycled and exhibited small and constant capacities of 0.7 and 0.33 wt %, respectively, as a function of number of cycles. The enhanced storage capacity of fullerite material is tentatively attributed to the presence of C60 oxide
Efficient Schemes for Reducing Imperfect Collective Decoherences
We propose schemes that are efficient when each pair of qubits undergoes some
imperfect collective decoherence with different baths. In the proposed scheme,
each pair of qubits is first encoded in a decoherence-free subspace composed of
two qubits. Leakage out of the encoding space generated by the imperfection is
reduced by the quantum Zeno effect. Phase errors in the encoded bits generated
by the imperfection are reduced by concatenation of the decoherence-free
subspace with either a three-qubit quantum error correcting code that corrects
only phase errors or a two-qubit quantum error detecting code that detects only
phase errors, connected with the quantum Zeno effect again.Comment: no correction, 3 pages, RevTe
The magnetoresistance tensor of La(0.8)Sr(0.2)MnO(3)
We measure the temperature dependence of the anisotropic magnetoresistance
(AMR) and the planar Hall effect (PHE) in c-axis oriented epitaxial thin films
of La(0.8)Sr(0.2)MnO(3), for different current directions relative to the
crystal axes, and show that both AMR and PHE depend strongly on current
orientation. We determine a magnetoresistance tensor, extracted to 4th order,
which reflects the crystal symmetry and provides a comprehensive description of
the data. We extend the applicability of the extracted tensor by determining
the bi-axial magnetocrystalline anisotropy in our samples
Meta-Stable Brane Configurations with Seven NS5-Branes
We present the intersecting brane configurations consisting of NS-branes,
D4-branes(and anti D4-branes) and O6-plane, of type IIA string theory
corresponding to the meta-stable nonsupersymmetric vacua in four dimensional
N=1 supersymmetric SU(N_c) x SU(N_c') x SU(N_c'') gauge theory with a symmetric
tensor field, a conjugate symmetric tensor field and bifundamental fields. We
also describe the intersecting brane configurations of type IIA string theory
corresponding to the nonsupersymmetric meta-stable vacua in the above gauge
theory with an antisymmetric tensor field, a conjugate symmetric tensor field,
eight fundamental flavors and bifundamentals. These brane configurations
consist of NS-branes, D4-branes(and anti D4-branes), D6-branes and O6-planes.Comment: 34pp, 9 figures; Improved the draft and added some footnotes; Figure
1, footnote 7 and captions of Figures 7,8,9 added or improved and to appear
in CQ
- …