341 research outputs found

    Electrospun polymer nanofibers: the booming cutting edge technology

    Get PDF
    Electrospinning has been recognized as a simple and efficient technique for the fabrication of ultrathin fibers from a variety of materials including polymers, composite and ceramics. Significant progress has been made throughout the past years in electrospinning and the resulting fibrous structures have been exploited in a wide range of potential applications. This article reviews the state-of-art of electrospinning to prepare fibrous electrode materials and polymer electrolytes based on electrospun membranes in the view of their physical and electrochemical properties for the application in lithium batteries. The review covers the electrospinning process, the governing parameters and their influence on fiber or membrane morphology. After a brief discussion of some potential applications associated with the remarkable features of electrospun membranes, we highlight the exploitation of this cutting edge technology in lithium batteries. Finally the article is concluded with some personal perspectives on the future directions in the fascinating field of energy storag

    Structural characterization and electrochemical properties of Co3O4 anode materials synthesized by a hydrothermal method

    Get PDF
    Cobalt oxide [Co3O4] anode materials were synthesized by a simple hydrothermal process, and the reaction conditions were optimized to provide good electrochemical properties. The effect of various synthetic reaction and heat treatment conditions on the structure and electrochemical properties of Co3O4 powder was also studied. Physical characterizations of Co3O4 are investigated by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller [BET] method. The BET surface area decreased with values at 131.8 m2/g, 76.1 m2/g, and 55.2 m2/g with the increasing calcination temperature at 200°C, 300°C, and 400°C, respectively. The Co3O4 particle calcinated at 200°C for 3 h has a higher surface area and uniform particle size distribution which may result in better sites to accommodate Li+ and electrical contact and to give a good electrochemical property. The cell composed of Super P as a carbon conductor shows better electrochemical properties than that composed of acetylene black. Among the samples prepared under different reaction conditions, Co3O4 prepared at 200°C for 10 h showed a better cycling performance than the other samples. It gave an initial discharge capacity of 1,330 mAh/g, decreased to 779 mAh/g after 10 cycles, and then showed a steady discharge capacity of 606 mAh/g after 60 cycles

    Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat

    Get PDF
    Group I mGluRs (mGluR1 and 5) pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs) in the spinal trigeminal subnucleus oralis (Vo), we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min), activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region

    Reversible reddish skin color change in a patient with compressive radial neuropathy

    Get PDF
    Background The motor and sensory symptoms caused by compressive radial neuropathy are well-known, but the involvement of the autonomic nervous system or the dermatologic symptoms are less well known. We report an unusual case of compressive radial neuropathy with reversible reddish skin color change. Case presentation A 42-year-old man was referred for left wrist drop, finger drop and a tingling sensation over the lateral dorsum of the left hand. Based on clinical information, neurologic examinations and electrophysiologic studies, he was diagnosed with compressive radial neuropathy. In addition, a reddish skin color change was observed at the area of radial sensory distribution. After two weeks of observation without specific treatment, the skin color had recovered along with a marked improvement in weakness and aberrant sensation. Conclusions Compressive radial neuropathy with a reversible reddish skin color change is unusual and is considered to be due to vasomotor dysfunction of the radial autonomic nerve. Compressive radial neuropathy is presented with not only motor and sensory symptoms but also autonomic symptoms; therefore, careful examination and inspection are needed at diagnosis

    Pacemaker Lead Endocarditis Caused by Achromobacter xylosoxidans

    Get PDF
    We report the case of a 35-yr-old patient who presented with high fever and chills. He had undergone a patch closure of the ventricular septal defect 18 yr before. One year later, a VVI pacemaker was implanted via the right subclavian vein because of complete heart block. Nine years after that, a new VVI pacemaker with another right ventricular electrode was inserted controlaterally and the old pacing lead was abandoned. Trans-thoracic and trans-esophageal echocardiogram identified the pacemaker lead in the right ventricle (RV) attaching hyperechoic materials and also a fluttering round hyperechoic mass with a stalk in the RV outflow tract. Cultures in blood and pus from pacemaker lead grew Achromobacter xylosoxidans. A diagnosis of pacemaker lead endocarditis due to Achromobacter xylosoxidans was made. In this regards, the best treatment is an immediate removal of the entire pacing system and antimicrobial therapy

    The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia.

    Get PDF
    Inflammation is closely related to the extent of damage following cerebral ischaemia, and the targeting of this inflammation has emerged as a promising therapeutic strategy. Here, we present that hypoxia-induced glial T-cell immunoglobulin and mucin domain protein (TIM)-3 can function as a modulator that links inflammation and subsequent brain damage after ischaemia. We find that TIM-3 is highly expressed in hypoxic brain regions of a mouse cerebral hypoxia-ischaemia (H/I) model. TIM-3 is distinctively upregulated in activated microglia and astrocytes, brain resident immune cells, in a hypoxia-inducible factor (HIF)-1-dependent manner. Notably, blockade of TIM-3 markedly reduces infarct size, neuronal cell death, oedema formation and neutrophil infiltration in H/I mice. Hypoxia-triggered neutrophil migration and infarction are also decreased in HIF-1α-deficient mice. Moreover, functional neurological deficits after H/I are significantly improved in both anti-TIM-3-treated mice and myeloid-specific HIF-1α-deficient mice. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against hypoxia-associated brain diseases

    A superconducting tensor detector for mid-frequency gravitational waves: its multi-channel nature and main astrophysical targets

    Full text link
    Mid-frequency band gravitational-wave detectors will be complementary for the existing Earth-based detectors (sensitive above 10 Hz or so) and the future space-based detectors such as LISA, which will be sensitive below around 10 mHz. A ground-based superconducting omnidirectional gravitational radiation observatory (SOGRO) has recently been proposed along with several design variations for the frequency band of 0.1 to 10 Hz. For three conceptual designs of SOGRO (e.g., pSOGRO, SOGRO and aSOGRO), we examine their multi-channel natures, sensitivities and science cases. One of the key characteristics of the SOGRO concept is its six detection channels. The response functions of each channel are calculated for all possible gravitational wave polarizations including scalar and vector modes. Combining these response functions, we also confirm the omnidirectional nature of SOGRO. Hence, even a single SOGRO detector will be able to determine the position of a source and polarizations of gravitational waves, if detected. Taking into account SOGRO's sensitivity and technical requirements, two main targets are most plausible: gravitational waves from compact binaries and stochastic backgrounds. Based on assumptions we consider in this work, detection rates for intermediate-mass binary black holes (in the mass range of hundreds up to 10410^{4} MM_\odot) are expected to be 0.00142.5yr10.0014-2.5 \,\, {\rm yr}^{-1}. In order to detect stochastic gravitational wave background, multiple detectors are required. Two aSOGRO detector networks may be able to put limits on the stochastic background beyond the indirect limit from cosmological observations.Comment: 35 pages, 8 figures, 4 table
    corecore