677 research outputs found

    Students’ sense of belonging and their socio-economic status in higher education: a quantitative approach

    Get PDF
    This study aims to explore the main aspects of sense of belonging, including academic and social engagement, life satisfaction, thoughts of leaving university, demographic characteristics and socio-economic status by applying quantitative measurement. Having considered the concepts of disadvantaged or non-traditional groups deployed in previous studies, a survey questionnaire was designed to investigate how certain factors are related to students’ belonging. Statistical analysis of data from 380 participants reveals that students’ sense of belonging and retention are crucially influenced by both academic engagement and social engagement, but independently. This study also addresses a lack of research about how the critical factors for disadvantage operate to determine belonging and retention in higher education. The findings should prompt a re-evaluation what we consider to be the sources of ‘disadvantage’, such as social class, age and ethnicity

    Fabrication and characterization of Ni-Ce-Zr ternary disk-shaped catalyst and its application for low-temperature CO2 methanation

    Full text link
    © 2019 Elsevier Ltd This study optimized a Ni-Ce-Zr catalyst and its contents for a CO2 methanation reaction by selecting a disk shape with a high mechanical strength, good durability, and thermal emission resistance. The physical and chemical properties of the obtained catalysts were determined by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller, hydrogen temperature-programmed reduction, and temperature-programmed desorption of CO2 analyses. In addition, the activity and stability of the obtained catalysts were then evaluated and compared. It was determined that the combined Ni-Ce-Zr catalyst positively affects the conversion of CO2 to CH4. Furthermore, a CO2 methanation experiment was performed under atmospheric pressure conditions at 200–350 °C. The CO2 conversion was 82% at 300 °C, and the CH4 selectivity was 100%. A durability test revealed a difference in the conversion of approximately 6% for 1000 h, which indicates that the catalytic performance was maintained for a significant period

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Eco-friendly one-pot synthesis of Prussian blue-embedded magnetic hydrogel beads for the removal of cesium from water

    Get PDF
    A simple one-step approach to fabricating Prussian blue-embedded magnetic hydrogel beads (PBMHBs) was fabricated for the effective magnetic removal of radioactive cesium (Cs-137) from water. Through the simple dropwise addition of a mixed aqueous solution of iron salts, commercial PB and polyvinyl alcohol (PVA) to an ammonium hydroxide (NH4OH) solution, the formation of hydrogel beads and the encapsulation of PB in beads were achieved in one pot through the gelation of PVA with in situ-formed iron oxide nanoparticles as the cross-linker. The obtained PB-MHBs, with 43.77 weight %of PB, were stable without releasing PB for up to 2 weeks and could be effectively separated from aqueous solutions by an external magnetic field, which is convenient for the large-scale treatment of Cs-contaminated water. Detailed Cs adsorption studies revealed that the adsorption isotherms and kinetics could be effectively described by the Langmuir isotherm model and the pseudo-second-order model, respectively. Most importantly, the PB-MHBs exhibited excellent selectivity for Cs-137 in (137)Cscontaminated simulated groundwater (55 Bq/g) with a high removal efficiency (&gt;99.5%), and the effective removal of Cs-137 from real seawater by these PB-MHBs demonstrated the excellent potential of this material for practical application in the decontamination of Cs-137-contaminated seawate

    A compare between myocardial topical negative pressure levels of -25 mmHg and -50 mmHg in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Topical negative pressure (TNP), widely used in wound therapy, is known to stimulate wound edge blood flow, granulation tissue formation, angiogenesis, and revascularization. We have previously shown that application of a TNP of -50 mmHg to the myocardium significantly increases microvascular blood flow in the underlying tissue. We have also shown that a myocardial TNP levels between -75 mmHg and -150 mmHg do not induce microvascular blood flow changes in the underlying myocardium. The present study was designed to elucidate the difference between -25 mmHg and -50 mmHg TNP on microvascular flow in normal and ischemic myocardium.</p> <p>Methods</p> <p>Six pigs underwent median sternotomy. The microvascular blood flow in the myocardium was recorded before and after the application of TNP using laser Doppler flowmetry. Analyses were performed before left anterior descending artery (LAD) occlusion (normal myocardium), and after 20 minutes of LAD occlusion (ischemic myocardium).</p> <p>Results</p> <p>A TNP of -25 mmHg significantly increased microvascular blood flow in both normal (from 263.3 ± 62.8 PU before, to 380.0 ± 80.6 PU after TNP application, * <it>p </it>= 0.03) and ischemic myocardium (from 58.8 ± 17.7 PU before, to 85.8 ± 20.9 PU after TNP application, * <it>p </it>= 0.04). A TNP of -50 mmHg also significantly increased microvascular blood flow in both normal (from 174.2 ± 20.8 PU before, to 240.0 ± 34.4 PU after TNP application, * <it>p </it>= 0.02) and ischemic myocardium (from 44.5 ± 14.0 PU before, to 106.2 ± 26.6 PU after TNP application, ** <it>p </it>= 0.01).</p> <p>Conclusion</p> <p>Topical negative pressure of -25 mmHg and -50 mmHg both induced a significant increase in microvascular blood flow in normal and in ischemic myocardium. The increase in microvascular blood flow was larger when using -25 mmHg on normal myocardium, and was larger when using -50 mmHg on ischemic myocardium; however these differences were not statistically significant.</p

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Transforming medical professionalism to fit changing health needs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The professional organization of medical work no longer reflects the changing health needs caused by the growing number of complex and chronically ill patients. Key stakeholders enforce coordination and remove power from the medical professions in order allow for these changes. However, it may also be necessary to initiate basic changes to way in which the medical professionals work in order to adapt to the changing health needs.</p> <p>Discussion</p> <p>Medical leaders, supported by health policy makers, can consciously activate the self-regulatory capacity of medical professionalism in order to transform the medical profession and the related professional processes of care so that it can adapt to the changing health needs. In doing so, they would open up additional routes to the improvement of the health services system and to health improvement. This involves three consecutive steps: (1) defining and categorizing the health needs of the population; (2) reorganizing the specialty domains around the needs of population groups; (3) reorganizing the specialty domains by eliminating work that could be done by less educated personnel or by the patients themselves. We suggest seven strategies that are required in order to achieve this transformation.</p> <p>Summary</p> <p>Changing medical professionalism to fit the changing health needs will not be easy. It will need strong leadership. But, if the medical world does not embark on this endeavour, good doctoring will become merely a bureaucratic and/or marketing exercise that obscures the ultimate goal of medicine which is to optimize the health of both individuals and the entire population.</p
    corecore