16,007 research outputs found
Pairing in the quantum Hall system
We find an analogy between the single skyrmion state in the quantum Hall
system and the BCS superconducting state and address that the quantum
mechanical origin of the skyrmion is electronic pairing. The skyrmion phase is
found to be unstable for magnetic fields above the critical field at
temperature , which is well represented by the relation .Comment: revtex, two figures, to appear in Phys. Rev. B (Rapid Communications
The Large N 't Hooft Limit of Kazama-Suzuki Model
We consider N=2 Kazama-Suzuki model on CP^N=SU(N+1)/SU(N)xU(1). It is known
that the N=2 current algebra for the supersymmetric WZW model, at level k, is a
nonlinear algebra. The N=2 W_3 algebra corresponding to N=2 was recovered from
the generalized GKO coset construction previously. For N=4, we construct one of
the higher spin currents, in N=2 W_5 algebra, with spins (2, 5/2, 5/2, 3). The
self-coupling constant in the operator product expansion of this current and
itself depends on N as well as k explicitly. We also observe a new higher spin
primary current of spins (3, 7/2, 7/2, 4). From the behaviors of N=2, 4 cases,
we expect the operator product expansion of the lowest higher spin current and
itself in N=2 W_{N+1} algebra. By taking the large (N, k) limit on the various
operator product expansions in components, we reproduce, at the linear order,
the corresponding operator product expansions in N=2 classical
W_{\infty}^{cl}[\lambda] algebra which is the asymptotic symmetry of the higher
spin AdS_3 supergravity found recently.Comment: 44 pages; the two typos in the first paragraph of page 23 corrected
and to appear in JHE
Geometrically Induced Phase Transitions at Large N
Utilizing the large N dual description of a metastable system of branes and
anti-branes wrapping rigid homologous S^2's in a non-compact Calabi-Yau
threefold, we study phase transitions induced by changing the positions of the
S^2's. At leading order in 1/N the effective potential for this system is
computed by the planar limit of an auxiliary matrix model. Beginning at the two
loop correction, the degenerate vacuum energy density of the discrete confining
vacua split, and a potential is generated for the axion. Changing the relative
positions of the S^2's causes discrete jumps in the energetically preferred
confining vacuum and can also obstruct direct brane/anti-brane annihilation
processes. The branes must hop to nearby S^2's before annihilating, thus
significantly increasing the lifetime of the corresponding non-supersymmetric
vacua. We also speculate that misaligned metastable glueball phases may
generate a repulsive inter-brane force which stabilizes the radial mode present
in compact Calabi-Yau threefolds.Comment: 47 pages, 7 figure
In situ real-time analysis of alloy film composition and segregation dynamics with parallel detection reflection electron energy loss spectroscopy
Real-time measurements of GexSi1 – x/Si(001) composition and segregation dynamics in Sn/Si(001) in molecular beam epitaxy are demonstrated using parallel detection reflection electron energy loss spectroscopy. Parallel detection enables quantitative acquisition of low-loss spectra in a time of < 500 µs and surface composition determination in GexSi1 – x/Si(001) via Ge L2,3 core loss analysis to a precision of approximately 2% in time of order 1 s. Segregation and trapping kinetics of monolayer thickness Sn films during Si epitaxy on Sn-covered Si(100) has also been studied using the Sn M4.5 core loss
Measurements of Velocity, Velocity Fluctuation, Density, and Stresses in Chute Flows of Granular Materials
Experiments on continuous, steady flows of granular materials down an inclined channel or chute have been conducted with the objectives of understanding the characteristics of chute flows and of acquiring information on the rheological behavior of granular material flow. Two neighboring fiber-optic displacement probes provide a means to measure (1) the mead velocity by cross-correlating two signals from the probes, (2) the unsteady or random component of the particle velocity in the longitudinal direction by a procedure of identifying particles, and (3) the mean particle spacing at the boundaries by counting the frequency of passage of the particles. In addition, a strain-gauged plate built into the chute base has been employed to make direct measurement of shear stress at the base. With the help of these instruments, the vertical profiles of mean velocity, velocity fluctuation, and linear concentration were obtained at the sidewalls. Measurements of some basic flow properties such as solid fraction, velocity, shear rate, and velocity fluctuation were analyzed to understand the characteristics of the chute flow. Finally, the rheological behavior of granular materials was studied with the experimental data. In particular, the rheological models of Lun et al. (1984) for general flow and fully developed flow were compared withthe present data
Weak-localization and rectification current in non-diffusive quantum wires
We show that electron transport in disordered quantum wires can be described
by a modified Cooperon equation, which coincides in form with the Dirac
equation for the massive fermions in a 1+1 dimensional system. In this new
formalism, we calculate the DC electric current induced by electromagnetic
fields in quasi-one-dimensional rings. This current changes sign, from
diamagnetic to paramagnetic, depending on the amplitude and frequency of the
time-dependent external electromagnetic field.Comment: changed title, added more detail, to appear in J. Phys.: Condens.
Matte
- …