16,007 research outputs found

    Pairing in the quantum Hall system

    Full text link
    We find an analogy between the single skyrmion state in the quantum Hall system and the BCS superconducting state and address that the quantum mechanical origin of the skyrmion is electronic pairing. The skyrmion phase is found to be unstable for magnetic fields above the critical field Bc(T)B_{c}(T) at temperature TT, which is well represented by the relation Bc(T)/Bc(0)≈[1−(T/Tc)3]1/2B_c(T)/B_{c}(0) \approx {[1-(T/T_c)^3]}^{1/2}.Comment: revtex, two figures, to appear in Phys. Rev. B (Rapid Communications

    The Large N 't Hooft Limit of Kazama-Suzuki Model

    Full text link
    We consider N=2 Kazama-Suzuki model on CP^N=SU(N+1)/SU(N)xU(1). It is known that the N=2 current algebra for the supersymmetric WZW model, at level k, is a nonlinear algebra. The N=2 W_3 algebra corresponding to N=2 was recovered from the generalized GKO coset construction previously. For N=4, we construct one of the higher spin currents, in N=2 W_5 algebra, with spins (2, 5/2, 5/2, 3). The self-coupling constant in the operator product expansion of this current and itself depends on N as well as k explicitly. We also observe a new higher spin primary current of spins (3, 7/2, 7/2, 4). From the behaviors of N=2, 4 cases, we expect the operator product expansion of the lowest higher spin current and itself in N=2 W_{N+1} algebra. By taking the large (N, k) limit on the various operator product expansions in components, we reproduce, at the linear order, the corresponding operator product expansions in N=2 classical W_{\infty}^{cl}[\lambda] algebra which is the asymptotic symmetry of the higher spin AdS_3 supergravity found recently.Comment: 44 pages; the two typos in the first paragraph of page 23 corrected and to appear in JHE

    Geometrically Induced Phase Transitions at Large N

    Full text link
    Utilizing the large N dual description of a metastable system of branes and anti-branes wrapping rigid homologous S^2's in a non-compact Calabi-Yau threefold, we study phase transitions induced by changing the positions of the S^2's. At leading order in 1/N the effective potential for this system is computed by the planar limit of an auxiliary matrix model. Beginning at the two loop correction, the degenerate vacuum energy density of the discrete confining vacua split, and a potential is generated for the axion. Changing the relative positions of the S^2's causes discrete jumps in the energetically preferred confining vacuum and can also obstruct direct brane/anti-brane annihilation processes. The branes must hop to nearby S^2's before annihilating, thus significantly increasing the lifetime of the corresponding non-supersymmetric vacua. We also speculate that misaligned metastable glueball phases may generate a repulsive inter-brane force which stabilizes the radial mode present in compact Calabi-Yau threefolds.Comment: 47 pages, 7 figure

    In situ real-time analysis of alloy film composition and segregation dynamics with parallel detection reflection electron energy loss spectroscopy

    Get PDF
    Real-time measurements of GexSi1 – x/Si(001) composition and segregation dynamics in Sn/Si(001) in molecular beam epitaxy are demonstrated using parallel detection reflection electron energy loss spectroscopy. Parallel detection enables quantitative acquisition of low-loss spectra in a time of < 500 µs and surface composition determination in GexSi1 – x/Si(001) via Ge L2,3 core loss analysis to a precision of approximately 2% in time of order 1 s. Segregation and trapping kinetics of monolayer thickness Sn films during Si epitaxy on Sn-covered Si(100) has also been studied using the Sn M4.5 core loss

    Measurements of Velocity, Velocity Fluctuation, Density, and Stresses in Chute Flows of Granular Materials

    Get PDF
    Experiments on continuous, steady flows of granular materials down an inclined channel or chute have been conducted with the objectives of understanding the characteristics of chute flows and of acquiring information on the rheological behavior of granular material flow. Two neighboring fiber-optic displacement probes provide a means to measure (1) the mead velocity by cross-correlating two signals from the probes, (2) the unsteady or random component of the particle velocity in the longitudinal direction by a procedure of identifying particles, and (3) the mean particle spacing at the boundaries by counting the frequency of passage of the particles. In addition, a strain-gauged plate built into the chute base has been employed to make direct measurement of shear stress at the base. With the help of these instruments, the vertical profiles of mean velocity, velocity fluctuation, and linear concentration were obtained at the sidewalls. Measurements of some basic flow properties such as solid fraction, velocity, shear rate, and velocity fluctuation were analyzed to understand the characteristics of the chute flow. Finally, the rheological behavior of granular materials was studied with the experimental data. In particular, the rheological models of Lun et al. (1984) for general flow and fully developed flow were compared withthe present data

    Weak-localization and rectification current in non-diffusive quantum wires

    Full text link
    We show that electron transport in disordered quantum wires can be described by a modified Cooperon equation, which coincides in form with the Dirac equation for the massive fermions in a 1+1 dimensional system. In this new formalism, we calculate the DC electric current induced by electromagnetic fields in quasi-one-dimensional rings. This current changes sign, from diamagnetic to paramagnetic, depending on the amplitude and frequency of the time-dependent external electromagnetic field.Comment: changed title, added more detail, to appear in J. Phys.: Condens. Matte
    • …
    corecore