43 research outputs found

    A multivariant stream analysis approach to detect and mitigate DDoS attacks in vehicular ad hoc networks

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are rapidly gaining attention due to the diversity of services that they can potentially offer. However, VANET communication is vulnerable to numerous security threats such as Distributed Denial of Service (DDoS) attacks. Dealing with these attacks in VANET is a challenging problem. Most of the existing DDoS detection techniques suffer from poor accuracy and high computational overhead. To cope with these problems, we present a novel Multivariant Stream Analysis (MVSA) approach. The proposed MVSA approach maintains the multiple stages for detection DDoS attack in network. The Multivariant Stream Analysis gives unique result based on the Vehicle-to-Vehicle communication through Road Side Unit. The approach observes the traffic in different situations and time frames and maintains different rules for various traffic classes in various time windows. The performance of the MVSA is evaluated using an NS2 simulator. Simulation results demonstrate the effectiveness and efficiency of the MVSA regarding detection accuracy and reducing the impact on VANET communication. © 2018 Raenu Kolandaisamy et al. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    Data Collection in Smart Communities Using Sensor Cloud: Recent Advances, Taxonomy, and Future Research Directions

    Get PDF
    The remarkable miniaturization of sensors has led to the production of massive amounts of data in smart communities. These data cannot be efficiently collected and processed in WSNs due to the weak communication capability of these networks. This drawback can be compensated for by amalgamating WSNs and cloud computing to obtain sensor clouds. In this article, we investigate, highlight, and report recent premier advances in sensor clouds with respect to data collection. We categorize and classify the literature by devising a taxonomy based on important parameters, such as objectives, applications, communication technology, collection types, discovery, data types, and classification. Moreover, a few prominent use cases are presented to highlight the role of sensor clouds in providing high computation capabilities. Furthermore, several open research challenges and issues, such as big data issues, deployment issues, data security, data aggregation, dissemination of control message, and on time delivery are discussed. Future research directions are also provided

    Local Descriptor for Retinal Fundus Image Registration

    Get PDF
    A feature-based retinal image registration (RIR) technique aligns multiple fundus images and composed of pre-processing, feature point extraction, feature descriptor, matching and geometrical transformation. Challenges in RIR include difference in scaling, intensity and rotation between images. The scale and intensity differences can be minimised with consistent imaging setup and image enhancement during the pre-processing, respectively. The rotation can be addressed with feature descriptor method that robust to varying rotation. Therefore, a feature descriptor method is proposed based on statistical properties (FiSP) to describe the circular region surrounding the feature point. From the experiments on public Fundus Image Registration dataset, FiSP established 99.227% average correct matches for rotations between 0° and 180°. Then, FiSP is paired with Harris corner, scale-invariant feature transform (SIFT), speeded-up robust feature (SURF), Ghassabi's and D-Saddle feature point extraction methods to assess its registration performance and compare with the existing feature-based RIR techniques, namely generalised dual-bootstrap iterative closet point (GDB-ICP), Harris-partial intensity invariant feature descriptor (PIIFD), Ghassabi's-SIFT, H-M 16, H-M 17 and D-Saddle-histogram of oriented gradients (HOG). The combination of SIFT-FiSP registered 64.179% of the image pairs and significantly outperformed other techniques with mean difference between 25.373 and 60.448% (p = <;0.001*)

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives

    Data Collection in Studies on Internet of Things (IoT), Wireless Sensor Networks (WSNs), and Sensor Cloud (SC): Similarities and Differences

    Get PDF
    Data collection is an essential part of sensor devices, particularly in such technologies like Internet of Things (IoT), wireless sensor networks (WSN), and sensor cloud (SC). In recent years, various literature had been published in these research areas to propose different models, architectures, and contributions in the domains. Due to the importance of efficient data collection regarding reducing energy consumption, latency, network lifetime, and general cost, a momentous literature volume has been published to facilitate data collection. Hence, review studies have been conducted on data collection in these domains in isolation. However, a lack of comprehensive review collectively identifies and analyzes the differences and similarities among the data collection proposals in IoT, WSN, and SC. The main objective of this research is to conduct a comprehensive survey to explore the current state, use cases, contributions, performance measures, evaluation measures, and architecture in the IoT, WSN, and SC research domains. The findings indicate that studies on data collection in IoT, WSN, and SC are relatively consistent with stable output in the last five years. Nine novel contributions are found with models, algorithms, and frameworks being the most utilized by the selected studies. In conclusion, key research challenges and future research directions have been identified and discussed

    Comparing neuroplasticity changes between high and low frequency gait training in subacute stroke: Protocol for a randomized, single-blinded, controlled study

    Get PDF
    Walking recovery post stroke can be slow and incomplete. Determining effective stroke rehabilitation frequency requires the assessment of neuroplasticity changes. Neurobiological signals from electroencephalogram (EEG) can measure neuroplasticity through incremental changes of these signals after rehabilitation. However, changes seen with a different frequency of rehabilitation require further investigation. It is hypothesized that the association between the incremental changes from EEG signals and the improved functional outcome measure scores are greater in higher rehabilitation frequency, implying enhanced neuroplasticity changes. The purpose of this study is to identify the changes in the neurobiological signals from EEG, to associate these with functional outcome measures scores, and to compare their associations in different therapy frequency for gait rehabilitation among subacute stroke individuals. A randomized, single-blinded, controlled study among patients with subacute stroke will be conducted with two groups: an intervention group (IG) and a control group (CG). Each participant in the IG and CG will receive therapy sessions three times a week (high frequency) and once a week (low frequency), respectively, for a total of 12 consecutive weeks. Each session will last for an hour with strengthening, balance, and gait training. The main variables to be assessed are the 6-Minute Walk Test (6MWT), Motor Assessment Scale (MAS), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and quantitative EEG indices in the form of delta to alpha ratio (DAR) and delta-plus-theta to alpha-plus-beta ratio (DTABR). These will be measured at preintervention (R0) and postintervention (R1). Key analyses are to determine the changes in the 6MWT, MAS, BBS, MBI, DAR, and DTABR at R0 and R1 for the CG and IG. The changes in the DAR and DTABR will be analyzed for association with the changes in the 6MWT, MAS, BBS, and MBI to measure neuroplasticity changes for both the CG and IG. We have recruited 18 participants so far. We expect to publish our results in early 2023. Conclusions: These associations are expected to be positive in both groups, with a higher correlation in the IG compared to the CG, reflecting enhanced neuroplasticity changes and objective evaluation on the dose-response relationship

    A Survey on Underwater Wireless Sensor Networks: Requirements, Taxonomy, Recent Advances, and Open Research Challenges

    Get PDF
    The domain of underwater wireless sensor networks (UWSNs) had received a lot of attention recently due to its significant advanced capabilities in the ocean surveillance, marine monitoring and application deployment for detecting underwater targets. However, the literature have not compiled the state-of-the-art along its direction to discover the recent advancements which were fuelled by the underwater sensor technologies. Hence, this paper offers the newest analysis on the available evidences by reviewing studies in the past five years on various aspects that support network activities and applications in UWSN environments. This work was motivated by the need for robust and flexible solutions that can satisfy the requirements for the rapid development of the underwater wireless sensor networks. This paper identifies the key requirements for achieving essential services as well as common platforms for UWSN. It also contributes a taxonomy of the critical elements in UWSNs by devising a classification on architectural elements, communications, routing protocol and standards, security, and applications of UWSNs. Finally, the major challenges that remain open are presented as a guide for future research directions

    Development of Portable Air Quality Index (AQI) and Emergency Vehicles Preemption Prototype Based on Internet of Mobile Things (IoMT)

    Get PDF
    The technological advancements of the Internet of Things (IoT) in the recent past have facilitated immense progress towards mitigation of environmental pollution through smart transportation systems and solutions. In particular, communication to the commuters about the traffic ahead or occurrences of congestion has been envisioned to play a major role in outsmarting traffic through mobile applications giving rise to the emergence of the Internet of Mobile Things (IoMT). However, the existing mobile applications that serve as traffic reporting solutions still face major issues such as fixed route suggestions, longer delays during busy hours or emergencies, inefficient prompting of road accidents and heavy traffic en route to a particular destination. This research aims at providing solutions for notifying the commuters with updates on the traffic based upon the Air Quality Index (AQI) of the routes towards the destination and also about the approach of emergency vehicles. The cross-platform mobile application in this way enables the user to opt for a route with good air quality so that the more congested routes are avoided thereby mitigating the air pollution induced by road traffic. The experimental testing and validation of the proposed methodology are applied for areas belonging to Greater Kuala Lumpur. The various timings divided according to peak and non-peak hours are experimentally tested for analyzing the parameters of traffic usage and pattern through the mobile application. The outcome of the experiments has showed that when traffic flow is modelled and governed through vehicular emissions and concentrations of air pollutants, nearly 75% of the congested traffic is reduced thereby, giving rise to pollution-free environment as well as mitigation of urban heat island (UHI) effect that is formed through vehicular heat generation and difference in temperatures. On the other hand, the approach of emergency vehicles also prompts the commuters to avoid panic. CCS Concepts • Hardware➝Emerging tools and methodologies. Keywords Air quality index; Air pollution; Road transportation; Internet of Things and traffic congestion. 1. INTRODUCTION In the past few decades, the population of vehicles has been on higher demand. This huge demand for vehicles results in heavy traffic congestion, accidents, pollution and costs millions of dollars for annual fuel consumption. Such drawbacks have led researchers to look for effective solutions to mitigate vehicular traffic congestion. The vehicular network environment is dynamic in nature due to the frequently changing topologies and network configurations. Though there are numerous existing Intelligent Transportation Systems (ITS) techniques comprising of Internet of Things (IoT) and Vehicular Adhoc Networks (VANETs), which enables the users to keep well-informed and well-updated about smarter ways to deal and handle utilization of transport networks, seldom do they provide guarantee for considering nonrecurring congestion as well as means for mitigation of traffic congestion induced air pollution and fuel consumption. Moreover, the long waiting hours of vehicles at signals and traffic jams leads to higher air pollution levels and heat generated from vehicular exhausts cause Urban Heat Island (UHI) effect. The developing countries like Malaysia, still face potential drawbacks such as increased air pollution levels, due to higher vehicle usage rate resulting in adverse health hazards such as respiratory diseases and asthma. In this research, the Air Quality Index (AQI) values obtained using the deployment of real-time AQI measuring Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    A localization-free interference and energy holes minimization routing for underwater wireless sensor networks

    Get PDF
    Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay
    corecore