13 research outputs found

    Taxonomic Revisiting and Phylogenetic Placement of Two Endangered Plant Species: Silene leucophylla Boiss. and Silene schimperiana Boiss. (Caryophyllaceae)

    No full text
    The genus Silene L. is one of the largest genera in Caryophyllaceae, and is distributed in the Northern Hemisphere and South America. The endemic species Silene leucophylla and the near-endemic S. schimperiana are native to the Sinai Peninsula, Egypt. They have reduced population size and are endangered on national and international scales. These two species have typically been disregarded in most studies of the genus Silene. This research integrates the Scanning Electron Microscope (SEM), species micromorphology, and the phylogenetic analysis of four DNA markers: ITS, matK, rbcL and psb-A/trn-H. Trichomes were observed on the stem of Silene leucophylla, while the S. schimperiana has a glabrous stem. Irregular epicuticle platelets with sinuate margin were found in S. schimperiana. Oblong, bone-shaped, and irregularly arranged epidermal cells were present on the leaf of S. leucophylla, while Silene schimperiana leaf has “tetra-, penta-, hexa-, and polygonal” epidermal cells. Silene leucophylla and S. schimperiana have amphistomatic stomata. The Bayesian phylogenetic analysis of each marker individually or in combination represented the first phylogenetic study to reveal the generic and sectional classification of S. leucophylla and S. schimperiana. Two Silene complexes are proposed based on morphological and phylogenetic data. The Leucophylla complex was allied to section Siphonomorpha and the Schimperiana complex was related to section Sclerocalycinae. However, these two complexes need further investigation and more exhaustive sampling to infer their complex phylogenetic relationships

    Molecular Identification and Phylogenetic Placement of Rosa arabica Crép. (Rosaceae), a Critically Endangered Plant Species

    No full text
    The Egyptian narrowly endemic and critically endangered plant species Rosa arabica Crép. was studied employing a taxonomic and molecular approach. Morphological investigations, distance analysis, and phylogenetic reconstruction revealed that R. arabica is a distinct species with great affinity to R. canina and differentiated from R. rubiginosa. Molecular identification based on the sequences of multiple markers single or in combination ITS, matK, rbcL, and trnL-F succeeded in identifying R. arabica at genus and species levels. We evaluated the potential of each marker and a combination of the nuclear ITS -Internal Transcribed Spacer- with one of the plastid markers, matK, rbcL, or trnL-F, to accurately identify Rosa species. All of them were successful in identifying R. arabica. Classification based on DNA sequences shows that R. arabica is placed within section Caninae in a clade comprising R. canina and R. rubiginosa. Moreover, R. arabica is closely related to other European Rosa species. In conclusion, our results indicate that the four DNA markers can provide species resolution in the context of the genus Rosa and relatives, aiming to characterize morphology and genetic diversity in the ecological and economically important genus Rosa

    DNA Barcoding and Phylogenetic Placement of the Genus Euphorbia L. (Euphorbiaceae) in Egypt

    No full text
    (1) Background: The genus Euphorbia L. in Egypt is represented by 40 species, one subspecies, and three varieties which are distributed in almost all phytogeographical regions in Egypt. The genus is well known for its medicinal importance; however, various and sometimes anomalous morphological characters make the identification of the genus a problematic case. (2) Methods: In this study, six DNA markers: matK, rbcL, ETS, trnL intron, trnL spacer, and the entire ITS region (ITS1 + 5.8S + ITS2), as well as subunits ITS1 and ITS2 were evaluated singly and in combination to investigate their usage as potential DNA barcodes. The Maximum Likelihood (ML) and BLASTn analyses were conducted for 37 individuals representing 26 species of Egyptian Euphorbia. (3) Results: The BLASTn comparison of the newly generated DNA sequences of the Egyptian Euphorbia species showed that ITS, ITS1 and ITS2 subunits displayed high levels of species discrimination. On the other hand, the ML analysis of the DNA sequences of trnL intron yielded a better resolved phylogenetic tree than the other regions. However, our phylogenetic analysis based on DNA sequences of other markers: matK, rbcL, trnL, and the entire ITS region, with additional sequences from GenBank have shown that E. dracunculoides, E. hyssopifolia, E. lasiocarpa and E. granulata are probably not monophyletic. (4) Conclusion: This study, along with the broadest taxon coverage in Egypt, emphasizes the importance of using DNA markers for precise identification and phylogenetic placement of the genus Euphorbia in Egypt within the whole genus

    Endoscopic Endonasal Partial Middle Turbinectomy Approach: Adaptability of the Procedure in a Cadaveric Study and in Surgery for Different Sphenoid Sinus and Skull Base Lesions

    No full text
    Objective: To demonstrate the flexibility, adaptability, and efficacy of endoscopic endonasal removal of the inferior half of the middle turbinate in a cadaveric study and in surgery for the treatment of different sphenoid sinus and skull base lesions. Methods: Anatomic Cadaveric Study: Five adult cadaveric heads were studied. Six nostrils of 3 cadavers were studied endoscopically after the lower half of the middle turbinate was removed. Two adult cadaveric heads underwent bilateral paraseptal sagittal sectioning and were studied after the lower half of the middle turbinate was removed. Sixty-five patients with different sphenoid sinus and skull base-related lesions were treated through this surgical approach. Results: This approach increased surgical exposure, decreased tubular vision, and offered wider anatomic panoramic orientation with 0-degree and angled endoscopes. In the surgical group, there were no major intra- or postoperative complications. The approach improved exposure, accessibility to the lesion, and permitted good hemostasis, tumor resection, and repair of the skull base defect. Conclusion: The current approach provides a wide surgical field without increasing morbidity. It avoids unnecessary trauma to the other nostril as occurs in a binostril approach. The harvested piece of turbinate tissue is an excellent source of donor material for successful reconstruction of the sellar floor without inducing side effects or complications

    Long-Term Outcome of Endonasal Endoscopic Skull Base Reconstruction with Nasal Turbinate Graft

    No full text
    Objective: To study the long-term outcome of endonasal endoscopic skull base reconstruction with nasal turbinate tissue free graft. Patients and Methods: This study included 55 consecutive patients who underwent endonasal endoscopic skull base reconstruction with nasal turbinate graft and were available for follow-up. They were 30 patients with pituitary adenomas, 20 with cerebrospinal fluid (CSF) rhinorrhea of different etiologies, three with meningoencephalocele, and two with skull base meningiomas. Autologous nasal turbinate tissue materials were used in reconstructing the skull base defect. Clinical follow-up with endoscopic nasal examination was done routinely 1, 3, 6, and 12 months after surgery. Computed tomography and magnetic resonance imaging were performed when indicated. The follow-up period ranged from 6 months to 8 years. Results: There were no major operative or postoperative complications. Nasal turbinate graft was effective in sealing of intraoperative CSF leak, obliteration of dead space, and anatomic reconstruction of the skull base. There was no evidence of graft migration or inflammatory changes. Starting from 3 months after surgery to the rest of the follow-up period, endonasal endoscopic view of the site of duraplasty showed that: with small skull base defect (less than 5 mm), there was neither dural pulsation nor prolapse; with moderate-sized defect (5 to 10 mm), there was dural pulsation without prolapse; with larger defect (> 10 mm), there was dural pulsation and prolapse. These finding were constant regardless of the etiology of the lesion and the reconstruction material used. Conclusions: This long-term study demonstrated the efficacy of nasal turbinate graft in sealing of CSF leak without any delayed complications. Other rigid materials may be considered in reconstruction of large skull base defect (more than 10 mm) to prevent dural prolapse and herniation. For any future endonasal procedure for those patients, who had previous endonasal endoscopic duraplasty, the surgeons should be fully aware of the state of duraplasty (e.g., dural prolapse) to avoid any intraoperative complication (e.g., penetration of the prolapsed dura during nasal packing)

    Comparative Taxonomic Study of Balanites aegyptiaca (L.) Delile (Zygophyllaceae)

    No full text
    Balanites aegyptiaca or Desert Date (Zygophyllaceae) is widely distributed in arid and semi-arid regions in Africa and South Asia. The current study aims to identify the infraspecific variation between B. aegyptiaca native to Egypt and Saudi Arabia. Detailed macro- and micromorphological analyses of leaflets, petioles, stems, spines, and fruits were performed using a light and Scanning Electron Microscope (SEM). Statistical analysis was performed by using the relevant R- software packages. Leaflet shape and apex, leaflet length/width ratio, leaflet indumentum density, and the petiole length were recorded. Based on these traits, the present study suggests the existence of one variety, “B. aegyptiaca var. aegyptiaca” in Makkah, Saudi Arabia. At the same time, two varieties were recorded in Egypt “B. aegyptiaca var. aegyptiaca and B. aegyptiaca var. tomentosa”

    Morphological, Anatomical and Chemical Characterization of <i>Ricinus communis</i> L. (Euphorbiaceae)

    No full text
    Ricinus communis L. (Euphorbiaceae, Acalyphoideae) is a highly variable species known as the castor oil plant. This study aimed to describe R. communis using several methodologies, such as vegetative morphometry, leaf surface ultrastructure, soil analysis, and gas chromatography-mass spectrometry (GC-MS) analysis, to understand the diversity of this species. The morphological analysis revealed that some samples had purple stems while others were grayish-green. The purple-stemmed R. communis phenotype reflects the intra-specific diversity of the species. The multivariate analysis of 25 R. communis samples based on 34 vegetative morphometric characteristics revealed that they belonged to three main groups (morphotypes). Each group attained some specific characteristics discriminating it from the other groups. Selected samples from each group were investigated using SEM, soil analysis, and GC-MS. The performed GC-MS technique revealed that six major compounds were detected in the chromatograms of the studied samples. The highest percentages of n-Hexadecanoic acid and 9,12,15-Octadecatrienoic acid were recorded. Ricinus communis demonstrated adaptive growth capability, where plants inhabiting coastal sites are salt-sensitive, while inland plants are relatively drought-tolerant species. The intra-specific variation between R. communis morphotypes indicated the possibility of the direct and indirect use of these varieties in genetic improvement programs of the species

    Influence of Polyethylene Glycol on Leaf Anatomy, Stomatal Behavior, Water Loss, and Some Physiological Traits of Date Palm Plantlets Grown In Vitro and Ex Vitro

    No full text
    Few reports explain the mechanism of PEG action on stomatal behavior and anatomical structure and analyze the photosynthetic pigments of in vitro date palm plantlets for better tolerance to ex vitro exposure. The main challenge for in vitro micropropagation of date palm techniques remains restricted to high survival rates and vigorous growth after ex vitro transplantation. In vitro hardening is induced by Polyethylene glycol PEG (0.0, 10, 20, 30 g L&minus;1) for 4 weeks. Leaf anatomy, stomatal behavior, water loss %, photosynthetic pigments, and reducing sugars were examined in date palm plantlets (Phoenix dactylifera L.) cv. (Sewi) after 4 weeks from in vitro PEG treatment and after 4 weeks from ex vitro transplanting to the greenhouse. Leaf anatomy and the surface ultrastructure of in vitro untreated leaves showed a thin cuticle layer, wide opened malfunctioning stomata, and abnormal leaf anatomy. Furthermore, addition of PEG resulted in increasing cuticle thickness, epicuticular wax depositions, and plastids density, improving the stomatal ability to close and decreasing the stomatal aperture length while reducing the substomatal chambers and intercellular spaces in the mesophyll. As a result, a significant reduction in water loss % was observed in both in vitro and ex vitro PEG treated leaves as compared to untreated ones, which exhibited rapid wilting when exposed to low humidity for 4 h. PEG application significantly increased Chlorophylls a, b and carotenoids concentrations, especially 10, 20 g L&minus;1 treatments, which were sequentially reflected in increasing the reducing sugar concentration. However, leaves of plantlets treated with PEG at 30 g L&minus;1 became yellow and had necrosis ends with death. In vitro hardening by 20 g L&minus;1 PEG increased the survival rate of plantlets to 90% after ex vitro transfer compared to 63% recorded for the untreated plantlets. Therefore, this application provides normal date palm plantlets developed faster and enhances survival after ex vitro transfer
    corecore