2 research outputs found

    Experimental investigation on the effect of drill quality on the performance of bone drilling

    No full text
    Bone drilling is a well-known process in operative fracture treatment and reconstructive surgery. The cutting ability of the drill is lost when used for multiple times. In this study, the effect of different levels of drill wear on bone temperature, drilling force, torque, delamination around the drilling region and surface roughness of the hole was investigated using a series of experiments. Experimental results demonstrated that the wear of the drill is strongly related to the drilling force, torque, temperature and surface roughness of the drilled hole. Statistical analysis was performed to find the effect of various factors on multiple response variables in the bone drilling process. The favorable conditions for bone drilling are obtained when feed rate, drill speed and the roughness of the cutting edge of the drill were fixed at 30 mm, 2000 rpm and up to 2 mm, respectively. Further, analysis of variance (ANOVA) was performed to determine the factor with a significant impact on the response variables. F-test and p-value indicated that the feed rate had the highest effect on grey relational grade followed by the roughness of the drill. This study suggests that the sharp drill along with controlled drilling speed and feed rate may be used for safe and efficient surgical drilling in bone

    Effect of drill quality on biological damage in bone drilling

    No full text
    Bone drilling is a universal procedure in orthopaedics for fracture fixation, installing implants, or reconstructive surgery. Surgical drills are subjected to wear caused by their repeated use, thermal fatigue, irrigation with saline solution, and sterilization process. Wear of the cutting edges of a drill bit (worn drill) is detrimental for bone tissues and can seriously affect its performance. The aim of this study is to move closer to minimally invasive surgical procedures in bones by investigating the effect of wear of surgical drill bits on their performance. The surface quality of the drill was found to influence the bone temperature, the axial force, the torque and the extent of biological damage around the drilling region. Worn drill produced heat above the threshold level related to thermal necrosis at a depth equal to the wall thickness of an adult human bone. Statistical analysis showed that a sharp drill bit, in combination with a medium drilling speed and drilling at shallow depth, was favourable for safe drilling in bone. This study also suggests the further research on establishing a relationship between surface integrity of a surgical drill bit and irreversible damage that it can induce in delicate tissues of bone using different drill sizes as well as drilling parameters and conditions.</p
    corecore