84 research outputs found

    The Deterministic Capacity of Relay Networks with Relay Private Messages

    Full text link
    We study the capacity region of a deterministic 4-node network, where 3 nodes can only communicate via the fourth one. However, the fourth node is not merely a relay since it can exchange private messages with all other nodes. This situation resembles the case where a base station relays messages between users and delivers messages between the backbone system and the users. We assume an asymmetric scenario where the channel between any two nodes is not reciprocal. First, an upper bound on the capacity region is obtained based on the notion of single sided genie. Subsequently, we construct an achievable scheme that achieves this upper bound using a superposition of broadcasting node 4 messages and an achievable "detour" scheme for a reduced 3-user relay network.Comment: 3 figures, accepted at ITW 201

    Using Network Coding to Achieve the Capacity of Deterministic Relay Networks with Relay Messages

    Full text link
    In this paper, we derive the capacity of the deterministic relay networks with relay messages. We consider a network which consists of five nodes, four of which can only communicate via the fifth one. However, the fifth node is not merely a relay as it may exchange private messages with the other network nodes. First, we develop an upper bound on the capacity region based on the notion of a single sided genie. In the course of the achievability proof, we also derive the deterministic capacity of a 4-user relay network (without private messages at the relay). The capacity achieving schemes use a combination of two network coding techniques: the Simple Ordering Scheme (SOS) and Detour Schemes (DS). In the SOS, we order the transmitted bits at each user such that the bi-directional messages will be received at the same channel level at the relay, while the basic idea behind the DS is that some parts of the message follow an indirect path to their respective destinations. This paper, therefore, serves to show that user cooperation and network coding can enhance throughput, even when the users are not directly connected to each other.Comment: 12 pages, 5 figures, submitted to IEEE JSAC Network codin

    The Deterministic Multicast Capacity of 4-Node Relay Networks

    Full text link
    In this paper, we completely characterize the deterministic capacity region of a four-node relay network with no direct links between the nodes, where each node communicates with the three other nodes via a relay. Towards this end, we develop an upper bound on the deterministic capacity region, based on the notion of a one-sided genie. To establish achievability, we use the detour schemes that achieve the upper bound by routing specific bits via indirect paths instead of sending them directly.Comment: 5 pages, 2 figures, accepted at ISIT'1
    • …
    corecore