4 research outputs found

    Emerging Selenium Nanoparticles for CNS Intervention

    Get PDF
    Central nervous system (CNS) diseases have seriously impacted human wellness for the past few decades, specifically in developing countries, due to the unavailability of successful treatment. Due to the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier transport of drug and treatment of CNS disorders has become difficult. Nanoscale materials like Selenium nanoparticles (SeNPs) offer a possible therapeutic strategy for treating brain diseases like Alzheimer’s, Frontotemporal dementia, Amyotrophic lateral sclerosis, Epilepsy, Parkinson’s disease, and Huntington’s disease. After being functionalized with active targeting ligands, SeNPs are versatile and competent in conveying combinations of cargoes to certain targets. We shall pay close attention to the primarily targeted therapies for SeNPs in CNS diseases. The objective of this paper was to highlight new developments in the exploration of SeNP formation and their potential applications in the management of CNS diseases. Furthermore, we also discussed the mechanisms underlying management of CNS disease, several therapeutic potentials for SeNPs, and the results of their preclinical research using diverse animal models. These methods might lead to better clinical and diagnostic results

    Breast Cancer Drug Repurposing a Tool for a Challenging Disease

    No full text
    Drug repurposing is one of the best strategy for drug discovery. There are several examples where drug repurposing has revolutionized the drug development process, such as metformin developed for diabetes and is now employed in polycystic ovarian syndrome. Drug repurposing against breast cancer is currently a hot topic to look upon. With the continued rise in breast cancer cases, there is a dire need for new therapies that can tackle it in a better way. There is a rise of resistance to current therapies, so drug repurposing might produce some lead candidates that may be promising to treat breast cancer. We will highlight the breast cancer molecular targets, currently available drugs, problems with current therapy, and some examples that might be promising to treat it

    Can natural products targeting EMT serve as the future anticancer therapeutics?

    No full text
    Cancer is the leading cause of death and has remained a big challenge for the scientific community. Because of the growing concerns, new therapeutic regimens are highly demanded to decrease the global burden. Despite advancements in chemotherapy, drug resistance is still a major hurdle to successful treatment. The primary challenge should be identifying and developing appropriate therapeutics for cancer patients to improve their survival. Multiple pathways are dysregulated in cancers, including disturbance in cellular metabolism, cell cycle, apoptosis, or epigenetic alterations. Over the last two decades, natural products have been a major research interest due to their therapeutic potential in various ailments. Natural compounds seem to be an alternative option for cancer management. Natural substances derived from plants and marine sources have been shown to have anti-cancer activity in preclinical settings. They might be proved as a sword to kill cancerous cells. The present review attempted to consolidate the available information on natural compounds derived from plants and marine sources and their anti-cancer potential underlying EMT mechanisms
    corecore