2,318 research outputs found

    Evolution of flame displacement speed within flame front in different regimes of premixed turbulent combustion

    Get PDF
    A transport equation for the flame displacement speed evolution in premixed flames is derived from first principles, and the mean behaviours of the terms of this equation are analysed based on a Direct Numerical Simulation database of statistically planar turbulent premixed flames with a range of different Karlovitz numbers. It is found that the regime of combustion (or Karlovitz number) affects the statistical behaviour of the mean contributions of the terms of the displacement speed transport equation which are associated with the normal strain rate and curvature dependence of displacement speed. The contributions arising from molecular diffusion and flame curvature play leading order roles in all combustion regimes, whereas the terms arising from the flame normal straining and reactive scalar gradient become leading order contributors only for the flames with high Karlovitz number values representing the thin reaction zones regime. The mean behaviours of the terms of the displacement speed transport equation indicate that the effects arising from fluid-dynamic normal straining, reactive scalar gradient and flame curvature play key roles in the evolution of displacement speed. The mean characteristics of the various terms of the displacement speed transport equation are explained in detail and their qualitative behaviours can be expounded based on the behaviours of the corresponding terms in the case of 1D steady laminar premixed flames. This implies that the flamelet assumption has the potential to be utilised for the purpose of any future modelling of the unclosed terms of the displacement speed transport equation even in the thin reaction zones regime for moderate values of Karlovitz number

    Probing many-body dynamics on a 51-atom quantum simulator

    Get PDF
    Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, enable the realization of new quantum phases and could ultimately lead to computational systems that outperform existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust manybody dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a programmable quantum simulator and could enable realizations of new quantum algorithms.Comment: 17 pages, 13 figure

    Integrating Neural Networks with a Quantum Simulator for State Reconstruction

    Get PDF
    We demonstrate quantum many-body state reconstruction from experimental data generated by a programmable quantum simulator, by means of a neural network model incorporating known experimental errors. Specifically, we extract restricted Boltzmann machine (RBM) wavefunctions from data produced by a Rydberg quantum simulator with eight and nine atoms in a single measurement basis, and apply a novel regularization technique to mitigate the effects of measurement errors in the training data. Reconstructions of modest complexity are able to capture one- and two-body observables not accessible to experimentalists, as well as more sophisticated observables such as the R\'enyi mutual information. Our results open the door to integration of machine learning architectures with intermediate-scale quantum hardware.Comment: 15 pages, 13 figure

    Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator

    Get PDF
    Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations. These fluctuations play a dominant role in the quantum critical region surrounding the transition point, where the dynamics are governed by the universal properties associated with the QPT. While time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early universe to Bose Einstein Condensates, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems is an outstanding challenge. Here, we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations while crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM) for an Ising-type QPT, explore scaling universality, and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models, providing new insights into exotic systems that have not been understood previously, and opening the door for precision studies of critical phenomena, simulations of lattice gauge theories and applications to quantum optimization

    Long-term ocular and visual outcomes following symptomatic and asymptomatic congenital CMV infection: a systematic review protocol

    Get PDF
    Introduction: Cytomegalovirus (CMV) is one of the most common congenitally acquired infections worldwide. Visual impairment is a common outcome for symptomatic infants, with long-term ophthalmic surveillance often recommended. However, there are no clear guidelines for ophthalmic surveillance in infants with asymptomatic disease. We aim to conduct a systematic review to establish the overall prevalence and incidence of eye and vision related disorders following congenital CMV infection (cCMV). // Methods and analysis: A systematic review and meta-analysis (pending appropriate data for analysis) of cross-sectional and longitudinal studies will be conducted. The PubMed, Embase and CINAHL databases will be searched up to 29 March 2022 without date or language restrictions. Studies will be screened by at least two independent reviewers. Methodological quality of included studies will be assessed using the Joanna Briggs Institute tool. The primary outcome measures will be incidence and/or prevalence of vision impairment or ophthalmic disorders in patients with symptomatic and asymptomatic cCMV infection. A narrative synthesis will be conducted for all included studies. The overall prevalence will be estimated by pooling data using a random-effects model. Heterogeneity between studies will be estimated using Cochran’s Q and the I2 statistics. Egger’s test will be used to assess for publication bias. // Ethics and dissemination: Ethical approval is not required as there is no primary data collection. Study findings will be disseminated at scientific meetings and through publication in peer-reviewed journals
    corecore