1 research outputs found

    A Comparative Study Between Convolution and Optimal Backstepping Controller for Single Arm Pneumatic Artificial Muscles

    Get PDF
    This study was based on the dynamic modeling and parameter characterization of the one-link robot arm driven by pneumatic artificial muscles. This work discusses an up-to-date control design based on the notion of a conventional and optimal backstepping controller for regulating a one-link robot arm with conflicting biceps and triceps positions supplied by pneumatic artificial muscles. The main problems found in systems that utilize pneumatic artificial muscle as actuators are primarily the large uncertainties, non-linearities, and time-varying features that severely impede movement performance in tracking control. In consideration of the uncertainty, high nonlinearity, and external disturbances that can exist during the motion. Lyapunov-based backstepping control technique was utilized to assure the stability of the system with improved dynamic performance. The bat algorithm optimization method is utilized in order to modify the variables used in the design of the controller to enhance the efficiency of the suggested controller. According to the conclusions, a quantitative comparison of the response in the PAM actuated the arm model in the current study and earlier investigations with the Backstepping controlled system revealed fair agreement with a variation of 37.5% from the optimal classical synergetic controller. In addition, computer simulations were utilized in order to compare the effectiveness of the proposed conventional controls and the optimal background. It has been proven that an optimal controller can control the uncertainties and maintain the controlled system’s stability
    corecore