24 research outputs found
Morphology engineering of self-assembled nanostructured CuCo2O4 anodes for lithium-ion batteries
The electrochemical kinetics and output capacity of active electrode materials are significantly influenced by their surface structure. Herein, the template‐free morphological evolution of CuCo2O4 is reported, which is achieved by controlling the nucleation and growth rate during the hydrothermal process and evaluating its anode performance. The charge‐transfer resistance and specific surface area of the fabricated CuCo2O4 anode films are influenced by the viscosity of the solvent used. The optimized mesoporous nanosheet anode exhibits a high specific discharge capacity (1547 mAh g–1) at 0.1 A g–1 and an excellent restoring capability (≈91%); it retains 88% of the initial capacity with a coulombic efficiency of ≈99% even after 250 discharge–charge cycles. The superior lithium‐ion energy storage performance of this anode is due to its electrochemically favorable porous 2D morphology with large Brunauer–Emmett–Teller (BET) specific surface area and pore volume, resulting in enhanced Li+ storage and intercalation property
Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications
Silicon belongs to group 14 elements along with carbon, germanium, tin, and lead in the periodic table. Similar to carbon, silicon is capable of forming a wide range of stable compounds, including silicon hydrides, organosilicons, silicic acids, silicon oxides, and silicone polymers. These materials have been used extensively in optoelectronic devices, sensing, catalysis, and biomedical applications. In recent years, silicon compounds have also been shown to be suitable for stabilizing delicate halide perovskite structures. These composite materials are now receiving a lot of interest for their potential use in various real‐world applications. Despite exhibiting outstanding performance in various optoelectronic devices, halide perovskites are susceptible to breakdown in the presence of moisture, oxygen, heat, and UV light. Silicon compounds are thought to be excellent materials for improving both halide perovskite stability and the performance of perovskite‐based optoelectronic devices. In this work, a wide range of silicon compounds that have been used in halide perovskite research and their applications in various fields are discussed. The interfacial stability, structure–property correlations, and various application aspects of perovskite and silicon compounds are also analyzed at the molecular level. This study also explores the developments, difficulties, and potential future directions associated with the synthesis and application of perovskite‐silicon compounds. imag
Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring.
A supercapacitor is well recognized as one of emerging energy sources for powering electronic devices in our daily life. Although various kind of supercapacitors have been designed and demonstrated, their market aspect could become advanced if the utilisation of other physicochemical properties (e.g. optical) is incorporated in the electrode. Herein, we present an electrochromic supercapacitor (smart supercapacitor) based on a nanoflake NiMoO4 thin film which is fabricated using a facile and well-controlled successive ionic layer adsorption and reaction (SILAR) technique. The polycrystalline nanoflake NiMoO4 electrode exhibits a large electrochemically active surface area of ~ 96.3 cm2. Its nanoporous architecture provides an easy pathway for the intercalation and de-intercalation of ions. The nanoflake NiMoO4 electrode is dark-brown in the charged state and becomes transparent in the discharged state with a high optical modulation of 57%. The electrode shows a high specific capacity of 1853 Fg–1 at a current rate of 1 Ag–1 with a good coloration efficiency of 31.44 cm2/C. Dynamic visual information is obtained when the electrode is charged at different potentials, reflecting the level of energy storage in the device. The device retains 65% capacity after 2500 charge-discharge cycles compared with its initial capacity. The excellent performance of the nanoflake NiMoO4 based smart supercapacitor is associated with the synergetic effect of nanoporous morphology with a large electrochemically active surface area and desired chemical composition for redox reaction
Influence of operating temperature on Li2ZnTi3O8 anode performance and high-rate charging activity of Li-ion battery
The temperature-dependent performance of a Li2ZnTi3O8 (LZTO) anode and the ultrafast-charging activity of a Li-ion battery were investigated. The LZTO anode operates at different temperatures between − 5 and 55 °C and in this work its sustainability is discussed in terms of storage performance. It delivered a discharge capacity of 181.3 mA h g−1 at 25 °C, which increased to 227.3 mA h g−1 at 40 °C and 131.2 mA h g−1 at − 5 °C. The variation in the discharge capacity with temperature is associated with the reaction kinetics and the change in internal resistance. It showed a capacity retention of 64% and a coulombic efficiency of 98% over 500 cycles. Exhibiting a discharge capacity of 107 mA h g−1, the LZTO anode was sustainable over 100 charge-discharge cycles at an ultra-high charging rate of 10 Ag−1. The reaction kinetics estimated from a cyclic voltammetry analysis at high scan rates revealed a capacitive-type storage mechanism
Self-assembled nanostructured CuCo2 O4 for electrochemical energy storage and the oxygen evolution reaction via morphology engineering
CuCo2O4 films with different morphologies of either mesoporous nanosheets, cubic, compact‐granular, or agglomerated embossing structures are fabricated via a hydrothermal growth technique using various solvents, and their bifunctional activities, electrochemical energy storage and oxygen evolution reaction (OER) for water splitting catalysis in strong alkaline KOH media, are investigated. It is observed that the solvents play an important role in setting the surface morphology and size of the crystallites by controlling nucleation and growth rate. An optimized mesoporous CuCo2O4 nanosheet electrode shows a high specific capacitance of 1658 F g−1 at 1 A g−1 with excellent restoring capability of ≈99% at 2 A g−1 and superior energy density of 132.64 Wh kg−1 at a power density of 0.72 kW kg−1. The CuCo2O4 electrode also exhibits excellent endurance performance with capacity retention of 90% and coulombic efficiency of ≈99% after 5000 charge/discharge cycles. The best OER activity is obtained from the CuCo2O4 nanosheet sample with the lowest overpotential of ≈290 mV at 20 mA cm−2 and a Tafel slope of 117 mV dec−1. The superior bifunctional electrochemical activity of the mesoporous CuCo2O4 nanosheet is a result of electrochemically favorable 2D morphology, which leads to the formation of a very large electrochemically active surface area
Nanofilament array embedded tungsten oxide for highly efficient electrochromic supercapacitor electrodes
The high-activity of metallic nanofilament array (NFA) embedded tungsten oxide (WO3) bifunctional electrodes for electrochromism and electrochemical energy storage is presented. The NFA reduces charge transfer resistance and increases the electrochemically active surface area at the electrode–electrolyte interface. The NFA-embedded WO3 electrode exhibits a specific capacity of 214 F g−1 (pristine WO3: 133 F g−1) at 0.25 mA cm−2, excellent cycling stability with ∼92% capacitance retention after 2000 cycles (pristine WO3: ∼75% capacitance retention) and a coloration efficiency of 128 cm2 C−1 (pristine WO3: 91 cm2 C−1) with superb optical modulation. These properties are significantly more advanced compared to the pristine WO3 electrode and superior to previously reported WO3-based composites and nanostructured materials
Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications
A high activity of a two-dimensional (2D) copper oxide (CuO) electrocatalyst for the oxygen evolution reaction (OER) is presented. The CuO electrode self-assembles on a stainless steel substrate via chemical bath deposition at 80 °C in a mixed solution of CuSO4 and NH4OH, followed by air annealing treatment, and shows a 2D nanosheet bundle-type morphology. The OER performance is studied in a 1 M KOH solution. The OER starts to occur at about 1.48 V versus the RHE (η = 250 mV) with a Tafel slope of 59 mV dec−1 in a 1 M KOH solution. The overpotential (η) of 350 mV at 10 mA cm−2 is among the lowest compared with other copper-based materials. The catalyst can deliver a stable current density of >10 mA cm−2 for more than 10 hours. This superior OER activity is due to its adequately exposed OER-favorable 2D morphology and the optimized electronic properties resulting from the thermal treatment
Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis
Efficient and low‐cost multifunctional electrodes play a key role in improving the performance of energy conversion and storage devices. In this study, ultrathin nanoporous CuCo2O4 nanosheets are synthesized on a nickel foam substrate using electrodeposition followed by air annealing. The CuCo2O4 nanosheet electrode exhibits a high specific capacitance of 1473 F g─1 at 1 A g─1 with a capacity retention of ∼93% after 5000 cycles in 3 M KOH solution. It also works well as an efficient oxygen evolution reaction electrocatalyst, demonstrating an overpotential of 260 mV at 20 mA cm─2 with a Tafel slope of ∼64 mV dec─1. in 1 M KOH solution, which is the lowest reported among other copper-cobalt based transition metal oxide catalysts. The catalyst is very stable at >20 mA cm─2 for more than 25 h. The superior electrochemical performance of the CuCo2O4 nanosheet electrode is due to the synergetic effect of the direct growth of 2D nanosheet structure and a large electrochemically active surface area associated with nanopores on the CuCo2O4 nanosheet surface
Two-dimensional layered hydroxide nanoporous nanohybrids pillared with zero-dimensional polyoxovanadate nanoclusters for enhanced water oxidation catalysis
The oxygen‐evolution reaction (OER) is critical in electrochemical water splitting and requires an efficient, sustainable, and cheap catalyst for successful practical applications. A common development strategy for OER catalysts is to search for facile routes for the synthesis of new catalytic materials with optimized chemical compositions and structures. Here, nickel hydroxide Ni(OH)2 2D nanosheets pillared with 0D polyoxovanadate (POV) nanoclusters as an OER catalyst that can operate in alkaline media are reported. The intercalation of POV nanoclusters into Ni(OH)2 induces the formation of a nanoporous layer‐by‐layer stacking architecture of 2D Ni(OH)2 nanosheets and 0D POV with a tunable chemical composition. The nanohybrid catalysts remarkably enhance the OER activity of pristine Ni(OH)2. The present findings demonstrate that the intercalation of 0D POV nanoclusters into Ni(OH)2 is effective for improving water oxidation catalysis and represents a potential method to synthesize novel, porous hydroxide‐based nanohybrid materials with superior electrochemical activities
One-Pot Synthesized Biomass C-Si Nanocomposites as an Anodic Material for High-Performance Sodium-Ion Battery
Aiming at materializing an excellent anodic source material of the high-performance sodium-ion battery (SIB), we fabricated the biomass carbon-silicon (C-Si) nanocomposites by the one-pot synthesis of facile magnesiothermic reduction using brown rice husk ashes. The C-Si nanocomposites displayed an aggregated morphology, where the spherical Si nanoparticles (9 nm on average) and the C nanoflakes were encapsulated and decorated with each other. When utilizing the nanocomposites as an SIB anode, a high initial discharge capacity (i.e., 378 mAh/g at 100 mA/g) and a high reversible capacity (i.e., 122 mAh/g at 200 mA/g) were achieved owing to their enhanced electronic and ionic conductivities. Moreover, the SIB device exhibited a high cyclic stability in its Coulombic efficiency (i.e., 98% after 100 charge-discharge cycles at 200 mA/g). These outstanding results depict that the one-pot synthesized biomass C-Si nanocomposites are beneficial for future green energy-storage technology