5 research outputs found
Data Gathering in Wireless Sensor Networks Using Intermediate Nodes
ABSTRACT Energy consumption is an essential concern to Wireless Sensor Networks (WSNs).The major cause of the energy consumption in WSNs is due to the data aggregation. A data aggregation is a process of collecting data from sensor nodes and transmitting these data to the sink node or base station. An effective way to perform such a task is accomplished by using clustering. In clustering, nodes are grouped into clusters where a number of nodes, called cluster heads, are responsible for gathering data from other nodes, aggregate them and transmit them to the Base Station (BS). In this paper we produce a new algorithm which focused on reducing the transmission bath between sensor nodes and cluster heads. A proper utilization and reserving of the available power resources is achieved with this technique compared to the well-known LEACH_C algorithm
Identification of promising anti-EBOV inhibitors: de novo drug design, molecular docking and molecular dynamics studies
The Ebola virus (EBOV) outbreak was recorded as the largest in history and caused many fatalities. As seen in previous studies, drug repurposing and database filtration were the two major pathways to searching for potent compounds against EBOV. In this study, a deep learning (DL) approach via the LigDream tool was employed to obtain novel and effective anti-EBOV inhibitors. Based on the galidesivir (BCX4430) chemical structure, 100 compounds were collected and inspected using various in silico approaches. Results from the molecular docking study indicated that mol1_069 and mol1_092 were the best two potent compounds with a docking score of −7.1 kcal mol−1 and −7.0 kcal mol−1, respectively. Molecular dynamics simulations, in addition to binding energy calculations, were conducted over 100 ns. Both compounds exhibited lower binding energies than BCX4430. Furthermore, compared with BCX4430 (%Absorption = 60.6%), mol1_069 and mol1_092 scored higher values of % Absorption equal to 68.1% and 63.7%, respectively. The current data point to the importance of using DL in the drug design process instead of conventional methods such as drug repurposing or database filtration. In conclusion, mol1_069 and mol1_092 are promising anti-EBOV drug candidates that require further in vitro and in vivo investigations
A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease
Among a group of 310 natural antiviral natural metabolites, our team identified three compounds as the most potent natural inhibitors against the SARS-CoV-2 main protease (PDB ID: 5R84), Mpro. The identified compounds are sattazolin and caprolactin A and B. A validated multistage in silico study was conducted using several techniques. First, the molecular structures of the selected metabolites were compared with that of GWS, the co-crystallized ligand of Mpro, in a structural similarity study. The aim of this study was to determine the thirty most similar metabolites (10%) that may bind to the Mpro similar to GWS. Then, molecular docking against Mpro and pharmacophore studies led to the choice of five metabolites that exhibited good binding modes against the Mpro and good fit values against the generated pharmacophore model. Among them, three metabolites were chosen according to ADMET studies. The most promising Mpro inhibitor was determined by toxicity and DFT studies to be caprolactin A (292). Finally, molecular dynamics (MD) simulation studies were performed for caprolactin A to confirm the obtained results and understand the thermodynamic characteristics of the binding. It is hoped that the accomplished results could represent a positive step in the battle against COVID-19 through further in vitro and in vivo studies on the selected compounds