4 research outputs found

    Synergistic antibacterial activity of silver nanoparticles and hydrogen peroxide.

    No full text
    The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Herein, the synergistic antibacterial activity of silver nanoparticles and hydrogen peroxide combination is reported. Unlike the bacteriostatic or slightly bactericidal activity achieved by using each agent alone, using these two agents in combination, even at relatively low concentrations, resulted in complete eradication of both the Gram negative Escherichia coli and the Gram positive Staphylococcus aureus in short treatment times indicating a clear synergistic effect between them. Modifying the surface chemistry of silver nanoparticles and the accompanied change in their surface charge enabled a further enhancement of such synergistic effect implying the importance of this aspect. Mechanistically, a Fenton-like reaction between silver nanoparticles and hydrogen peroxide is discussed and hypothesized to be the basis of the observed synergy. Achieving such a significant antibacterial activity at low concentrations reduces the potential toxicity of these agents and hence enables their utilization as an alternative antibacterial approach in wider range of applications

    All trans retinoic acid as a host-directed immunotherapy for tuberculosis

    No full text
    Tuberculosis (TB) is the top bacterial infectious disease killer and one of the top ten causes of death worldwide. The emergence of strains of multiple drug-resistant tuberculosis (MDR-TB) has pushed our available stock of anti-TB agents to the limit of effectiveness. This has increased the urgent need to develop novel treatment strategies using currently available resources. An adjunctive, host-directed therapy (HDT) designed to act on the host, instead of the bacteria, by boosting the host immune response through activation of intracellular pathways could be the answer. The integration of multidisciplinary approaches of repurposing currently FDA-approved drugs, with a targeted drug-delivery platform is a very promising option to reduce the long timeline associated with the approval of new drugs - time that cannot be afforded given the current levels of morbidity and mortality associated with TB infection. The deficiency of vitamin A has been reported to be highly associated with the increased susceptibility of TB. All trans retinoic acid (ATRA), the active metabolite of vitamin A, has proven to be very efficacious against TB both in vitro and in vivo. In this review, we discuss and summarise the importance of vitamin A metabolites in the fight against TB and what is known regarding the molecular mechanisms of ATRA as a host-directed therapy for TB including its effect on macrophages cytokine profile and cellular pathways. Furthermore, we focus on the issues behind why previous clinical trials with vitamin A supplementation have failed, and how these issues might be overcome

    Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis

    No full text
    Developing new effective treatment strategies to overcome the rise in multi-drug resistant tuberculosis cases (MDR-TB) represents a global challenge. A host-directed therapy (HDT), acting on the host immune response rather than Mtb directly, could address these resistance issues. We developed an HDT for targeted TB treatment, using All Trans Retinoic Acid (ATRA)-loaded nanoparticles (NPs) that are suitable for nebulization. Efficacy studies conducted on THP-1 differentiated cells infected with the H37Ra avirulent Mycobacterium tuberculosis (Mtb) strain, have shown a dose-dependent reduction in H37Ra growth as determined by the BACT/ALERT® system. Confocal microscopy images showed efficient and extensive cellular delivery of ATRA-PLGA NPs into THP-1-derived macrophages. A commercially available vibrating mesh nebulizer was used to generate nanoparticle-loaded droplets with a mass median aerodynamic diameter of 2.13 μm as measured by cascade impaction, and a volumetric median diameter of 4.09 μm as measured by laser diffraction. In an adult breathing simulation experiment, 65.1% of the ATRA PLGA-NP dose was inhaled. This targeted inhaled HDT could offer a new adjunctive TB treatment option that could enhance current dosage regimens leading to better patient prognosis and a decreasing incidence of MDR-TB

    An automated culture system for use in preclinical testing of host-directed therapies for tuberculosis

    No full text
    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), was the most significant infectious disease killer globally until the advent of COVID-19. Mtb has evolved to persist in its intracellular environment, evade host defenses, and has developed resistance to many anti-tubercular drugs. One approach to solving resistance is identifying existing approved drugs that will boost the host immune response to Mtb. These drugs could then be repurposed as adjunctive host-directed therapies (HDT) to shorten treatment time and help overcome antibiotic resistance. Quantification of intracellular Mtb growth in macrophages is a crucial aspect of assessing potential HDT. The gold standard for measuring Mtb growth is counting colony-forming units (CFU) on agar plates. This is a slow, labor-intensive assay that does not lend itself to rapid screening of drugs. In this protocol, an automated, broth-based culture system, which is more commonly used to detect Mtb in clinical specimens, has been adapted for preclinical screening of host-directed therapies. The capacity of the liquid culture assay system to investigate intracellular Mtb growth in macrophages treated with HDT was evaluated. The HDTs tested for their ability to inhibit Mtb growth were all-trans Retinoic acid (AtRA), both in solution and encapsulated in poly(lactic-co-glycolic acid) (PLGA) microparticles and the combination of interferon-gamma and linezolid. The advantages of this automated liquid culture-based technique over the CFU method include simplicity of setup, less labor-intensive preparation, and faster time to results (5-12 days compared to 21 days or more for agar plates)
    corecore