19 research outputs found

    Efficiency Maximization of Grid-Connected Tidal Stream Turbine System: A Supervisory Energy-Based Speed Control Approach with Processor in the Loop Experiment

    No full text
    Permanent magnet synchronous generator (PMSG) with a back-to-back power converter is one of the commonly used technologies in tidal power generation schemes. However, the nonlinear dynamics and time-varying parameters of this kind of conversion system make the controller computation a challenging task. In the present paper, a novel intelligent control method based on the passivity concept with a simple structure is proposed. This proposed strategy consists of passivity-based speed control (PBSC) combined with a fuzzy logic method to address the robustness problems faced by conventional control techniques such as proportional-integral (PI) control. The proposed method extracts the maximum power from the tidal energy, compensates for the uncertainty in a damped way where the entire dynamics of the PMSG are considered when designing the control law. The fuzzy logic controller is selected, which makes the proposed strategy intelligent to compute the damping gains to make the closed-loop passive and approximate the unstructured dynamics of the PMSG. Thus, the robustness property of the closed-loop system is considerably increased. The regulation of DC voltage and reactive power to their desired values are the principal objectives of the present work. The proposed method is used to control the machine-side converter (MSC), while a conventional PI method is adopted to control the grid-side converter (GSC). Dynamic simulations show that the DC voltage and reactive power errors are extremely reduced with the proposed strategy; ±0.002 for the DC-link voltage and ±0.000015 in the case of the reactive power. Moreover, the lowest steady-state error and better convergence criterion are shown by the proposed control (0.3 × 10−3 s). Generally, the proposed candidate offers high robustness, fast speed convergence, and high efficiency over the other benchmark nonlinear strategies. Moreover, the proposed controller was also validated in a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad

    Lightning Protection, Cost Analysis and Improved Efficiency of Solar Power Plant for Irrigation System

    No full text
    The constraints in the path of sustainable, cost-effective, and efficient photovoltaic power supply to the irrigation system in remote areas are addressed in this work. The intrinsic thermal losses in the PV system due to high working temperature and shading losses that are caused by dirt are mitigated through water cleaning mechanisms. Moreover, the protection against lightning strikes and surges is assimilated in the system to ensure the durability of the PV system. Lastly, cost analysis of 0.4 MW PV plant for the Area of 7444.69 m2 has been performed by the Homer Pro, and comparison is made with the same size of a Hydro power plant to estimate the economic feasibility of power generation for the purpose of irrigation through the pump house. The water-cooling mechanism resulted in the gain of one volt per panel of 260 W, which is a significant improvement with regard to collective PV plant generation. As the water cleaning mechanism for dust removal is accompanied with the cooling process, it results in the two volts rise per panel. Additionally, a cost analysis of 0.4 MW PV system provided a significant budget saving estimating USD ~2 million as compared to that of a Hydel power plant of the same size

    Improved PVC/ZnO Nanocomposite Insulation for High Voltage and High Temperature Applications

    No full text
    Abstract Nanosized inorganic oxides have the trends to improve many characteristics of solid polymer insulation. In this work, the characteristics of improved poly (vinyl chloride) (PVC)/ZnO are evaluated using 0, 2, 4 and 6 phr of ZnO nanoparticles dispersed in polymer matrix using internal mixer and finally compressed into circular disk with 80 mm diameter using compression molding technique. Dispersion properties are studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and optical microscopy (OM). The effect of filler on the electrical, optical, thermal, and dielectric properties of the PVC are also analyzed. Hydrophobicity of nano-composites is evaluated by measuring contact angle and recording hydrophobicity class using Swedish transmission research institute (STRI) classification method. Hydrophobic behavior decreases with the increase in filler content; contact angle increases up to 86°, and STRI class of HC3 for PZ4 is observed. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are employed to evaluate the thermal properties of the samples. Also, continuous decrease of optical band gap energy from 4.04 eV for PZ0 to 2.57 eV for PZ6 is observed. In the meantime, an enhancement in the melting temperature, Tm, is observed from 172 to 215 °C. To check the stability of materials against hydrothermal stresses, all the fabricated materials are then subjected to a hydrothermal aging process for 1000 h and their structural stability is analyzed using optical microscopy and FTIR analyses

    An Intelligent Technique for Improving DataAccess Based on Merging Some of Protocols

    No full text
    Abstract —This paper presents a new approach for analyzing and exploring the performance of a time dynamical model with delays transmission among peer to peer’s transactions based on an intelligent learning technique in the presence of time delays factors. These factors presented in a P2P networked system may degrade significantly its performance which may lead to improper operating conditions. To deal with this issue, an analytical alternative and exact alternative model is introduced and used to develop a new technique to overcome the drawbacks due to the presence of these delays elements that exit in the transmission transactions. This introduces an Enhanced Randomized Broadcast Algorithm (ERBA) which canbe easily implemented on overlay networks without extra cost. Including the dynamical delay factor in the process is shown to strengthen our work based on a new novel approach in P2P network with dynamical delayed time transmission elements. A new development of a platform that would be suitable for P2P network is implemented. The qualitative performance analysis is easily studied using some dynamical models for a new inelegant routing algorithm.A new package is achieved based on NS-2. It is shown that using this package is helped in obtaining the best secured reputation shortest path including the effect of transmission delays. The performance of transactions among P2P nodes based on the proposed algorithms is introduced using both theoretical analysis and simulation. IJSER Index Terms —Merging protocols, P2P delayed network, time delays factors, NS-2 simulation package. HIS paper discusses an intelligent technique for improving queries and test them for reputation based on some security rules data access based on merging some of protocols package to allowthem to be downloaded. Any peer can arbitrarily join or using p2p delayed networks. Since a few years and due to a leave the network at any time and each peer itself is responsible

    Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation

    No full text
    The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber (NSiR), 15% SiO2 microcomposite (SSMC), 15% alumina trihydrate (ATH) microcomposite (SAMC) and 10% ATH + 2% SiO2 hybrid composite (SMNC) are presented in this study. The dielectric constant and dissipation factor were measured before and after each compression especially in the frequency range of 50 kHz to 2MHz. Before the compression, SSMC expressed the highest dielectric constant of 4.44 followed by SMNC and SAMC. After the compression cycle, SAMC expressed a better dielectric behavior exhibiting dielectric constant of 7.19 and a dissipation factor of 0.01164. Overall, SAMC expressed better dielectric response before and after compression cycle with dielectric constant and dissipation factor in admissible ranges

    Investigation of a Battery Storage System Aimed at Demand-Side Management of Residential Load

    No full text
    In this paper, an approach is presented for the demand-side management of residential loads in the urban areas of Pakistan using a battery storage system at the feeder level. The proposed storage system will be installed by a private distributor to supply affordable electricity during peak hours. The experimental data used to carry out this research work are the Pakistan Residential Energy Consumption (PRECON) data set. The households of the data set are categorized based on electric power usage through K-means clustering. The clusters are expanded for feeder synthesis to represent small-scale, medium-scale, and large-scale consumption. This expansion is performed through uniform distribution in a Monte Carlo simulation. The techno-economic analysis for the installation of a battery storage system is carried out for each feeder using SAM. The results of the research project elucidated that the load factors of the feeders representing small-scale, medium-scale, and large-scale consumption improved by 1%, 6%, and 7% by using the optimally sized batteries of 50 kW (670 kWh), 90 kW (1207 kWh), and 100 kW (1360 kWh), respectively. The distributor profit and the consumer utility bill savings ranged from US12 ktoUS12 k to US25 k. The results proved the validity of the used approach to simultaneously reduce the consumer bill, maximize the distributor profit, and improve the feeder load factor. The novelty of this work lies in the location and in the way the system modeling has been performed with limited data

    Genetic Algorithm Based PI Control with 12-Band Hysteresis Current Control of an Asymmetrical 13-Level Inverter

    No full text
    In this paper, a twelve-band hysteresis control is applied to a recent thirteen-level asymmetrical inverter topology by employing a robust proportional-integral (PI) controller whose parameters are decided online by genetic algorithm (GA). The asymmetrical inverter topology can generate thirteen levels of output voltage incorporating only ten switches and exhibits boosting capability. A 12-band hysteresis current control strategy is applied to ensure the satisfactory operation of the inverter. It is designed to provide a sinusoidal line current at the unity power factor. The tuning of the PI controller is achieved by a nature inspired GA. Comparative analysis of the results obtained after application of the GA and the conventional Ziegler–Nichols method is also performed. The efficacy of the proposed control on WE topology is substantiated in the MATLAB Simulink environment and was further validated through experimental/real-time implementation using DSC TMS320F28379D and Typhoon HIL real-time emulator (Typhoon-HIL-402)

    Robust Differentiator-Based NeuroFuzzy Sliding Mode Control Strategies for PMSG-WECS

    No full text
    A robust control algorithm is always needed to harvest maximum power from a Wind Energy Conversion System (WECS) by operating it consistently at a Maximum Power Point (MPP) in the presence of wind speed variations. In this work, a Maximum Power Point Tracking (MPPT) control algorithm is designed via Conventional Sliding Mode Control (CSMC), the Super Twisting Algorithm (STA), and the Real Twisting Algorithm (RTA) and is applied to a Permanent Magnet Synchronous Generator (PMSG)-based WECS. CSMC is model-based whereas the STA and RTA are model-free controllers. In practice, the unavailability of nonlinear terms and aerodynamic forces deteriorates the performance of these controllers. Thus, an offline NeuroFuzzy algorithm is incorporated to estimate the nonlinear drift and control input channel to improve the robustness of these algorithms. In addition, the generator shaft speed and its missing derivative is recovered via a Uniform Robust Exact Differentiator (URED). In order to carry out a comprehensive comparative study among the three competitors, the overall system is simulated in a closed loop under the action of these controllers at three different operating conditions, i.e., nominal, varying load and inertia, and varying wind speed, using MATLAB/Simulink. The acquired results confirm the superiority of the RTA over the STA and CSMC in terms of robustness and chatter reduction
    corecore