12 research outputs found
Transforming medicine: artificial intelligence integration in the peripheral nervous system
In recent years, artificial intelligence (AI) has undergone remarkable advancements, exerting a significant influence across a multitude of fields. One area that has particularly garnered attention and witnessed substantial progress is its integration into the realm of the nervous system. This article provides a comprehensive examination of AI’s applications within the peripheral nervous system, with a specific focus on AI-enhanced diagnostics for peripheral nervous system disorders, AI-driven pain management, advancements in neuroprosthetics, and the development of neural network models. By illuminating these facets, we unveil the burgeoning opportunities for revolutionary medical interventions and the enhancement of human capabilities, thus paving the way for a future in which AI becomes an integral component of our nervous system’s interface
[18F]AlF-NOTA-ADH-1: A new PET molecular radiotracer for imaging of N-cadherin-positive tumors
BackgroundThe cell adhesion molecule (CAM) N-cadherin has become an important target for tumor therapy. The N-cadherin antagonist, ADH-1, exerts significant antitumor activity against N-cadherin-expressing cancers.MethodsIn this study, [18F]AlF-NOTA-ADH-1 was radiosynthesized. An in vitro cell binding test was performed, and the biodistribution and micro-PET imaging of the probe targeting N-cadherin were also studied in vivo.ResultsRadiolabeling of ADH-1 with [18F]AlF achieved a yield of up to 30% (not decay-corrected) with a radiochemical purity of >97%. The cell uptake study showed that Cy3-ADH-1 binds to SW480 cells but weakly binds to BXPC3 cells in the same concentration range. The biodistribution results demonstrated that [18F]AlF-NOTA-ADH-1 had a good tumor/muscle ratio (8.70±2.68) in patient-derived xenograft (PDX) tumor xenografts but a lower tumor/muscle ratio (1.91±0.69) in SW480 tumor xenografts and lowest tumor/muscle ratio (0.96±0.32) in BXPC3 tumor xenografts at 1 h post-injection (p.i.) These findings were in accordance with the immunohistochemistry results. The micro PET imaging results revealed good [18F]AlF-NOTA-ADH-1 tumor uptake in pancreatic cancer PDX xenografts with strong positive N-calcium expression, while lower tumor uptake in SW480 xenografts with positive expression of N-cadherin, and significantly lower tumor uptake in BXPC3 xenografts with low expression of N-cadherin, which was consistent with the biodistribution and immunohistochemistry results. The N-cadherin-specific binding of [18F]AlF-NOTA-ADH-1 was further verified by a blocking experiment involving coinjection of a non radiolabeled ADH-1 peptide, resulting in a significant reduction in tumor uptake in PDX xenografts and SW480 tumor.Conclusion[18F]AlF-NOTA-ADH-1 was successfully radiosynthesized, and Cy3-ADH-1 showed favorable N-cadherin-specific targeting ability by in vitro data. The biodistribution and microPET imaging of the probe further showed that [18F]AlF-NOTA-ADH-1 could discern different expressions of N-cadherin in tumors. Collectively, the findings demonstrated the potential of [18F]AlF-NOTA-ADH-1 as a PET imaging probe for non-invasive evaluation of the N-cadherin expression in tumors
The first case report of an intraosseous epidermoid cyst in the distal phalanx of the index finger with infection resulting in single clubbing finger: A case report and review of the literature
An intraosseous epidermoid cyst at the distal phalanx of the index finger is extremely rare. These cysts are asymptomatic unless ruptured, severely infected, or transformed into malignant squamous cell carcinoma. We present a case of a single clubbing finger in an adult diagnosed with an intraosseous epidermoid cyst in the distal phalanx of the left index finger with no history of pulmonary or cardiovascular diseases. Preoperative MRI showed an expansile lytic lesion with a sclerotic margin. Histopathological examination indicates that there is keratinous cell debris in the cyst with a wall of stratified squamous epithelium, which was the key to the correct diagnosis of an intraosseous epidermoid cyst. Written informed consent was obtained from the patient for publication of this case report and any accompanying images
Techniques and graft materials for repairing peripheral nerve defects
Peripheral nerve defects refer to damage or destruction occurring in the peripheral nervous system, typically affecting the limbs and face. The current primary approaches to address peripheral nerve defects involve the utilization of autologous nerve transplants or the transplantation of artificial material. Nevertheless, these methods possess certain limitations, such as inadequate availability of donor nerve or unsatisfactory regenerative outcomes post-transplantation. Biomaterials have been extensively studied as an alternative approach to promote the repair of peripheral neve defects. These biomaterials include both natural and synthetic materials. Natural materials consist of collagen, chitosan, and silk, while synthetic materials consist of polyurethane, polylactic acid, and polycaprolactone. Recently, several new neural repair technologies have also been developed, such as nerve regeneration bridging technology, electrical stimulation technology, and stem cell therapy technology. Overall, biomaterials and new neural repair technologies provide new methods and opportunities for repairing peripheral nerve defects. However, these methods still require further research and development to enhance their effectiveness and feasibility
Mechanisms and recent advances in the diagnosis and treatment of nitrous oxide-induced peripheral neuropathy: a narrative review
Under standard conditions, nitrous oxide (N2O) manifests as a colorless, odorless gas with a mildly sweet taste. The compound finds applications in various fields, including its use as an aerosol propellants, an accelerant in motor racing, and an anesthetic in surgical procedures and dentistry. Unfortunately, the recreational misuse of N2O has become prevalent among young individuals due to its euphoric and hallucinogenic effects. Compounding this issue is the fact that nitrous oxide can be easily obtained from over-the-counter household items, facilitating its non-medical use. The global community has witnessed a surge in the recreational utilization of nitrous oxide gas in recent years. Despite the widespread non-medical abuse of N2O, there remains inadequate understanding of the potential adverse effects resulting from exposure to it. This paper provides an overview of management findings, laboratory and electrodiagnostic characteristics, as well as clinical presentations associated with neurological disorders induced by nitrous oxide usage
Imaging diagnosis in peripheral nerve injury
Peripheral nerve injuries (PNIs) can be caused by various factors, ranging from penetrating injury to compression, stretch and ischemia, and can result in a range of clinical manifestations. Therapeutic interventions can vary depending on the severity, site, and cause of the injury. Imaging plays a crucial role in the precise orientation and planning of surgical interventions, as well as in monitoring the progression of the injury and evaluating treatment outcomes. PNIs can be categorized based on severity into neurapraxia, axonotmesis, and neurotmesis. While PNIs are more common in upper limbs, the localization of the injured site can be challenging. Currently, a variety of imaging modalities including ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) and positron emission tomography (PET) have been applied in detection and diagnosis of PNIs, and the imaging efficiency and accuracy many vary based on the nature of injuries and severity. This article provides an overview of the causes, severity, and clinical manifestations of PNIs and highlights the role of imaging in their management
Post-COVID reactivation of latent Bartonella henselae infection: a case report and literature review
Abstract Cat scratch disease (CSD) is caused by Bartonella henselae (B. henselae) and presents as lymphadenopathy following close contact with cats. However, in context of the global COVID-19 pandemic, clinical manifestations of CSD may vary, posing new challenges for healthcare professionals. Here we describe a case of a 54-year-old male with painful left upper arm mass, which gradually resolved until he was infected with COVID-19. The mass then rapidly progressed before admission. Meanwhile, pulmonary symptoms including pleural effusion emerged simultaneously. The cause was undetermined with routine blood culture and pathological test until the next generation sequencing (NGS) confirmed the presence of B. henselae. We believe this case is the first to report localized aggravation of CSD after COVID-19 infection and hopefully, offers treatment experience for clinicians worldwide
Advancements in autologous peripheral nerve transplantation care: a review of strategies and practices to facilitate recovery
Autologous peripheral nerve transplantation, a pioneering technique in nerve injury treatment, has demonstrated remarkable progress. We examine recent nursing strategies and methodologies tailored to various anatomical sites, highlighting their role in postoperative recovery enhancement. Encompassing brachial plexus, upper limb, and lower limb nerve transplantation care, this discussion underscores the importance of personalized rehabilitation plans, interdisciplinary collaboration, and innovative approaches like nerve electrical stimulation and nerve growth factor therapy. Moreover, the exploration extends to effective complication management and prevention strategies, encompassing infection control and pain management. Ultimately, the review concludes by emphasizing the advances achieved in autologous peripheral nerve transplantation care, showcasing the potential to optimize postoperative recovery through tailored and advanced practices