4 research outputs found

    Dark matter: A spin one half fermion field with mass dimension one?

    Full text link
    We report an unexpected theoretical discovery of a spin one half matter field with mass dimension one. It is based on a complete set of eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity it belongs to a non standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate it as a first-principle candidate for dark matter.Comment: 5 pages, RevTex, v2: slightly extended discussion, new refs. and note adde

    Special relativity with two invariant scales: Motivation, Fermions, Bosons, Locality, and Critique

    Full text link
    We present a Master equation for description of fermions and bosons for special relativities with two invariant scales, SR2, (c and lambda_P). We introduce canonically-conjugate variables (chi^0, chi) to (epsilon, pi) of Judes-Visser. Together, they bring in a formal element of linearity and locality in an otherwise non-linear and non-local theory. Special relativities with two invariant scales provide all corrections, say, to the standard model of the high energy physics, in terms of one fundamental constant, lambda_P. It is emphasized that spacetime of special relativities with two invariant scales carries an intrinsic quantum-gravitational character. In an addenda, we also comment on the physical importance of a phase factor that the whole literature on the subject has missed and present a brief critique of SR2. In addition, we remark that the most natural and physically viable SR2 shall require momentum-space and spacetime to be non-commutative with the non-commutativity determined by the spin content and C, P, and T properties of the examined representation space. Therefore, in a physically successful SR2, the notion of spacetime is expected to be deeply intertwined with specific properties of the test particle.Comment: Int. J. Mod. Phys. D (in press). Extended version of a set of two informal lectures given in "La Sapienza" (Rome, May 2001
    corecore