1,460 research outputs found

    Tunnelling Characteristics of Stone-Wales Defects in Monolayers of Sn and Group-V Elements

    Full text link
    Topological defects in ultrathin layers are often formed during synthesis and processing, thereby, strongly influencing their electronic properties . In this paper, we investigate the role of Stone-Wales (SW) defects in modifying the electronic properties of the monolayers of Sn and group-V elements. The calculated results find the electronic properties of stanene (monolayer of Sn atoms) to be strongly dependent on the concentration of SW-defects e.g., defective stanene has nearly zero band gap (~ 0.03 eV) for the defect concentration of 2.2 x 10^13 cm^-2 which opens up to 0.2 eV for the defect concentration of 3.7 x 10^13 cm^-2. In contrast, SW-defects appear to induce conduction states in the semiconducting monolayers of group-V elements. These conduction states act as channels for electron tunnelling, and the calculated tunnelling characteristics show the highest differential conductance for the negative bias with the asymmetric current-voltage characteristics. On the other hand, the highest differential conductance was found for the positive bias in stanene. Simulated STM topographical images of stanene and group-V monolayers show distinctly different features in terms of their cross-sectional views and distance-height profiles which can serve as fingerprints to identify the topological defects in the monolayers of group-IV and group-V elements in experiments.Comment: 18 pages, 5 figures, 1 tabl

    Comparative experimental and Density Functional Theory (DFT) study of the physical properties of MgB2 and AlB2

    Full text link
    In present study, we report an inter-comparison of various physical and electronic properties of MgB2 and AlB2. Interestingly, the sign of S(T) is +ve for MgB2 the same is -ve for AlB2. This is consistent our band structure plots. We fitted the experimental specific heat of MgB2 to Debye Einstein model and estimated the value of Debye temperature (theta) and Sommerfeld constant (gamma) for electronic specific heat. Further, from gamma the electronic density of states (DOS) at Fermi level N(EF) is calculated. From the ratio of experimental N (EF) and the one being calculated from DFT, we obtained value of Lembda to be 1.84, thus placing MgB2 in the strong coupling BCS category. The electronic specific heat of MgB2 is also fitted below Tc using pi-model and found that it is a two gap superconductor. The calculated values of two gaps are in good agreement with earlier reports. Our results clearly demonstrate that the superconductivity of MgB2 is due to very large phonon contribution from its stretched lattice. The same two effects are obviously missing in AlB2 and hence it is not superconducting. DFT calculations demonstrated that for MgB2 the majority of states come from Sigma and Pi 2p states of boron on the other hand Sigma band at Fermi level for AlB2 is absent. This leads to a weak electron phonon coupling and also to hole deficiency as Pi bands are known to be of electron type and hence obviously the AlB2 is not superconducting. The DFT calculations are consistent with the measured physical properties of the studied borides, i.e., MgB2 and AlB2Comment: 16 pages Text + Figs: comments/suggestions welcome ([email protected])/www.freewebs.com/vpsawana

    Anomalous Thermoelectric power of over-doped Bi2Sr2CaCu2O8 superconductor

    Get PDF
    Temperature dependence of thermoelectric power S(T) of three differently processed Bi2Sr2CaCu2O8 (Bi2212) samples, viz. as-processed melt quenched (Bi2212-MQ), 6000C N2-annealed (Bi2212-N2) and 6000C O2-annealed (Bi2212-O2) is reported here. All the samples possess single-phase character and their superconducting transition temperatures (TcR=0) are 85 K, 90 K and 72 K respectively for Bi2212-MQ, Bi2212-N2 and Bi2212-O2. While Bi2212-MQ and Bi2212-N2 samples are in near optimum doping regime, Bi2212-O2 is an over-doped sample. TcS=0 values obtained through S(T) data are also in line with those deduced from the temperature dependence of resistance and DC magnetization. Interestingly, S(T) behaviour of the optimally-doped Bi2212-MQ and Bi2212-N2 samples is seen to be positive in whole temperature range, it is found negative for the over-doped Bi2212-O2 sample above TcS=0. These results have been seen in the light of the recent band structure calculations and the ensuing split Fermi surface as determined by angle-resolved photoelectron spectroscopy (ARPES).Comment: 11 Pages Text + Figs: comments welcome ([email protected]

    Neutrino oscillations with disentanglement of a neutrino from its partners

    Full text link
    We bring attention to the fact that in order to understand existing data on neutrino oscillations, and to design future experiments, it is imperative to appreciate the role of quantum entanglement. Once this is accounted for, the resulting energy-momentum conserving phenomenology requires a single new parameter related to disentanglement of a neutrino from its partners. This parameter may not be CP symmetric. We illustrate the new ideas, with potentially measurable effects, in the context of a novel experiment recently proposed by Gavrin, Gorbachev, Veretenkin, and Cleveland. The strongest impact of our ideas is on the resolution of various anomalies in neutrino oscillations and on neutrino propagation in astrophysical environments.Comment: 6 page

    Chalcogen Height Dependence of Magnetism and Fermiology in FeTe_xSe_{1-x}

    Full text link
    FeTexSe1-x (x=0, 0.25, 0.50, 0.75 and 1) system has been studied using density functional theory. Our results show that for FeSe, LDA seems better approximation in terms of magnitude of magnetic energy whereas GGA overestimates it largely. On the other hand for FeTe, GGA is better approximation that gives experimentally observed magnetic state. It has been shown that the height of chalcogen atoms above Fe layers has significant effect on band structure, electronic density of states (DOS) at Fermi level N(EF) and Fermi surfaces. For FeSe the value of N(EF) is small so as to satisfy Stoner criteria for ferromagnetism, (I\timesN(EF)\geq1) whereas for FeTe, since the value of N(EF) is large, the same is close to be satisfied. Force minimization done for FeTexSe1-x using supercell approach shows that in disordered system Se and Te do not share same site and have two distinct z coordinates. This has small effect on magnetic energy but no significant difference in band structure and DOS near EF when calculated using either relaxed or average value of z for chalcogen atoms. Thus substitution of Se at Te site decreases average value of chalcogen height above Fe layers which in turn affect the magnetism and Fermiology in the system. By using coherent-potential approximation for disordered system we found that height of chalcogen atoms above Fe layer rather than chalcogen species or disorder in the anion planes, affect magnetism and shape of Fermi surfaces (FS), thus significantly altering nesting conditions, which govern antiferromagnetic spin fluctuations in the system.Comment: 24 pages Text+Figs: comments/suggestions welcome ([email protected]

    Two Dimensional Allotropes of Arsenene with Wide Range of High and Anisotropic Carrier Mobility

    Full text link
    Considering the rapid development of experimental techniques for fabricating 2D materials in recent years, various monolayers are expected to be experimentally realized in the near future. Motivated by the recent research activities focused on the honeycomb arsenene monolayers, stability and carrier mobility of non-honeycomb and porous allotropic arsenene are determined using first principles calculations. In addition to five honeycomb structures of arsenene, a total of eight other structures are considered in this study. An extensive analysis comprising energetics, phonon spectra and mechanical properties confirms that these structures are energetically and dynamically stable. All these structures are semiconductors with a broad range of band gap varying from ~1 eV to ~2.5 eV. Significantly, these monolayer allotropes possess anisotropic carrier mobilities as high as several hundred cm^{2}V^{-1}s^{-1} which is comparable with the well-known 2D materials such as black phosphorene and monolayer MoS_{2}. Combining such broad band gaps and superior carrier mobilities, these monolayer allotropes can be promising candidates for the superior performance of the next generation nanoscale devices. We further explore these monolayer allotropes for photocatalytic water splitting and find that arsenene monolayers have potential for usage as visible light driven photocatalytic water splitting.Comment: 31 pages, 8 figures, 3 table

    Randomized Trial Comparing the Effectiveness of 2 Electric Breast Pumps in the NICU.

    Get PDF
    Background:Mothers with preterm infants may need to express milk for considerable periods. Research to improve breast pump design has focused on compression stimuli, frequencies, and vacuums.Objective:This study aimed to compare the effectiveness of 2 electric pumps: Medela Symphony (pump S) and a novel pump (Philips AVENT Twin electronic pump; pump A). Both offer flexibility of rate and suction; pump A also incorporates petal compression cushions. Primary outcomes were (1) milk weight expressed during 10-day study period and (2) weight of milk expressed in a 15-minute test.Methods:Seventy-one mothers with preterm infants < 34 weeks were randomized. Mothers completed 10-day diaries including weight of milk expressed. Milk weight expressed during a single 15-minute test period and data on pumping mode, skin-to-skin contact, breastfeeding at infant discharge, and mothers' opinions of the pump were recorded.Results:There was no significant difference in milk expressed during the first 10 days between groups. Pump S mothers expressed significantly more milk during a fixed 15-minute period. Mothers using pump A awarded higher scores for certain characteristics of the pump, notably location of control button and ease of use. Similar proportions of infants received breast milk at discharge, but pump A mothers were more likely to be directly breastfeeding (odds ratio, 4.27 [95% confidence interval, 1.29, 14.1]).Conclusion:The breast pumps showed similar effectiveness in terms of milk expression and maternal opinions. The finding that breast pump design may influence breastfeeding at infant discharge merits further investigation
    corecore