228 research outputs found

    Neutrophil to lymphocyte ratio influences impact of steroids on efficacy of immune checkpoint inhibitors in lung cancer brain metastases

    Get PDF
    Steroids are often utilized to manage patients with non-small cell lung cancer brain metastases (NSCLCBM). Steroids and elevated neutrophil-to-lymphocyte ratio (NLR) have been associated with decreased overall survival (OS) in patients treated with immune checkpoint inhibitors (ICI). We retrospectively investigated patients treated with ICI after the diagnosis of NSCLCBM at a single tertiary care institution examing the impact of steroids and NLR. Overall survival (OS) and intracranial progression-free survival (PFS) were analyzed. 171 patients treated with ICI for NSCLCBM were included. Thirty-six received steroids within 30 days of the start of ICI, and 53 patients had an NLR ≥ 5 before the start of ICI. Upfront steroids was associated with decreased OS on multivariable analysis (median OS 10.5 vs. 17.9 months, p = .03) and intracranial PFS (5.0 vs. 8.7 months, p = .045). NLR ≥ 5 was indicative of worse OS (10.5 vs. 18.4 months, p = .04) but not intracranial PFS (7.2 vs. 7.7 months, p = .61). When NLR and upfront steroids are modeled together, there is a strong interaction (p = .0008) indicating that the impact of steroids depended on the patient\u27s NLR. In a subgroup analysis, only in patients with NLR \u3c 4 was there a significant difference in OS with upfront steroids (26.1 vs. 15.6 months, p = .032). The impact of steroids on the efficacy of ICI in patients with NSCLCBM is dependent on the patient\u27s NLR underscoring its importance in these patients. Patients with a low NLR, steroid use decreases the efficacy of ICI. These results can inform clinicians about the impact of steroids in patients treated with ICI

    Cross-sectional survey of patients, caregivers, and physicians on diagnosis and treatment of brain metastases

    Get PDF
    Background. The development of brain metastases (BM) is one of the most feared complications of cancer due to the substantial neurocognitive morbidity and a grim prognosis. In the past decade, targeted therapies and checkpoint inhibitors have demonstrated promising intracranial response rates for tumors of multiple histologies. As overall survival for these patients improves, there is a growing need to identify issues surrounding patient survivorship and to standardize physician practice patterns for these patients. To date, there has not been an adequate study to specifically explore these questions of survivorship and practice standardization for patients with advanced cancer and BM. Methods. Here, we present results from a cross-sectional survey in which we analyze responses from 237 patients, 209 caregivers, and 239 physicians to identify areas of improvement in the clinical care of BM. Results. In comparing physician and patient/caregiver responses, we found a disparity in the perceived discussion of topics pertaining to important aspects of BM clinical care. We identified variability in practice patterns for this patient population between private practice and academic physicians. Many physicians continue to have patients with BM excluded from clinical trials. Finally, we obtained patient/physician recommendations on high-yield areas for federal funding to improve patient quality of life. Conclusion. By identifying potential areas of unmet need, we anticipate this wealth of actionable information will translate into tangible benefits for both patients and caregivers. Future studies are needed to validate our findings

    Impact of KRAS mutation status on the efficacy of immunotherapy in lung cancer brain metastases

    Get PDF
    Immune checkpoint inhibitors (ICIs) have resulted in improved outcomes in non-small cell lung cancer (NSCLC) patients. However, data demonstrating the efficacy of ICIs in NSCLC brain metastases (NSCLCBM) is limited. We analyzed overall survival (OS) in patients with NSCLCBM treated with ICIs within 90 days of NSCLCBM diagnosis (ICI-90) and compared them to patients who never received ICIs (no-ICI). We reviewed 800 patients with LCBM who were diagnosed between 2010 and 2019 at a major tertiary care institution, 97% of whom received stereotactic radiosurgery (SRS) for local treatment of BM. OS from BM was compared between the ICI-90 and no-ICI groups using the Log-Rank test and Cox proportional-hazards model. Additionally, the impact of KRAS mutational status on the efficacy of ICI was investigated. After accounting for known prognostic factors, ICI-90 in addition to SRS led to significantly improved OS compared to no-ICI (12.5 months vs 9.1, p \u3c 0.001). In the 109 patients who had both a known PD-L1 expression and KRAS status, 80.4% of patients with KRAS mutation had PD-L1 expression vs 61.9% in wild-type KRAS patients (p = 0.04). In patients without a KRAS mutation, there was no difference in OS between the ICI-90 vs no-ICI cohort with a one-year survival of 60.2% vs 54.8% (p = 0.84). However, in patients with a KRAS mutation, ICI-90 led to a one-year survival of 60.4% vs 34.1% (p = 0.004). Patients with NSCLCBM who received ICI-90 had improved OS compared to no-ICI patients. Additionally, this benefit appears to be observed primarily in patients with KRAS mutations that may drive the overall benefit, which should be taken into account in the development of future trials

    Progress on Antiangiogenic Therapy for Patients with Malignant Glioma

    Get PDF
    Glioblastoma (GBM) is the most common primary brain tumor occurring in America. Despite recent advances in therapeutics, the prognosis for patients with newly diagnosed GBM remains dismal. As these tumors characteristically show evidence of angiogenesis (neovascularization) there has been great interest in developing anti-angiogenic therapeutic strategies for the treatment of patients with this disease and some anti-angiogenic agents have now been used for the treatment of patients with malignant glioma tumors. Although the results of these clinical trials are promising in that they indicate an initial therapeutic response, the anti-angiogenic therapies tested to date have not changed the overall survival of patients with malignant glioma tumors. This is due, in large part, to the development of resistance to these therapies. Ongoing research into key features of the neovasculature in malignant glioma tumors, as well as the general angiogenesis process, is suggesting additional molecules that may be targeted and an improved response when both the neovasculature and the tumor cells are targeted. Prevention of the development of resistance may require the development of anti-angiogenic strategies that induce apoptosis or cell death of the neovasculature, as well as an improved understanding of the potential roles of circulating endothelial progenitor cells and vascular co-option by tumor cells, in the development of resistance

    Endoglin inhibitor TRC105 with or without bevacizumab for bevacizumab-refractory glioblastoma (ENDOT): a multicenter phase II trial

    Get PDF
    Background: Glioblastoma (GBM), the most lethal primary brain tumor, has limited treatment options upon recurrence after chemoradiation and bevacizumab. TRC105 (carotuximab), a chimeric anti-endoglin (CD105) antibody, inhibits angiogenesis and potentiates activity of VEGF inhibitor bevacizumab in preclinical models. This study sought to assess safety, pharmacokinetics, and efficacy of TRC105 for bevacizumab-refractory GBM. Methods: We conducted a pre-registered (NCT01564914), multicenter, open-label phase II clinical trial (ENDOT). We administered 10 mg/kg TRC105 monotherapy (first cohort) in adults with GBM and radiographic progression following radiation, temozolomide and bevacizumab therapy. Primary outcome was median time-to-progression (TTP), amended after first cohort\u27s enrollment to median overall survival (mOS). Secondary outcomes were objective response rate, safety and tolerability, and progression-free survival (PFS). Results: 6 patients were enrolled in TRC105 monotherapy cohort. Median TTP and PFS of 5 evaluable patients receiving monotherapy was 1.4 months, in whom plasma VEGF-A levels were elevated post-therapy. Lack of response led to protocol amendment, and second cohort\u27s addition of bevacizumab+TRC105 with primary endpoint of mOS. 16 patients were enrolled in bevacizumab+TRC105 cohort. mOS of 15 evaluable patients was 5.7 (95%CI: 4.2-9.8) months. All 22 patients had measurable disease at baseline. Median PFS of 14 evaluable patients receiving bevacizumab+TRC105 was 1.8 months (95%CI 1.2-2.1). Serum TRC105 was measurable above target concentration of 25 ug/mL in all evaluable patients. Study medications were well-tolerated in both cohorts. Combined administration did not potentiate known toxicities of either medication, with cerebral hemorrhage not observed. Conclusions: Single-agent TRC105 lacks activity in bevacizumab-refractory GBM, possibly secondary to upregulated VEGF-A expression. Meaningful mOS in bevacizumab+TRC105 cohort warrants further trials to investigate efficacy of combination therapy

    Novel Therapeutic Approaches in Neoplastic Meningitis

    Get PDF
    Simple Summary Neoplastic meningitis (NM) is a frequent complication of cancer and is associated with a poor prognosis. The currently available therapies aim to alleviate symptoms and preserve the quality of life. It comprises a multimodal approach, including surgery, intrathecal and systemic chemotherapy, and radiotherapy. The specific treatment is individualized, based on clinical practice guidelines and expert opinion. There are multiple clinical trials undertaken to evaluate the efficacy of novel therapies, including targeted and immunotherapies. This article presents an updated review of treatment approaches in NM. Abstract Central nervous system (CNS) metastasis from systemic cancers can involve the brain parenchyma, leptomeninges, or the dura. Neoplastic meningitis (NM), also known by different terms, including leptomeningeal carcinomatosis and carcinomatous meningitis, occurs due to solid tumors and hematologic malignancies and is associated with a poor prognosis. The current management paradigm entails a multimodal approach focused on palliation with surgery, radiation, and chemotherapy, which may be administered systemically or directly into the cerebrospinal fluid (CSF). This review focuses on novel therapeutic approaches, including targeted and immunotherapeutic agents under investigation, that have shown promise in NM arising from solid tumors

    Integration of Systemic Therapy and Stereotactic Radiosurgery for Brain Metastases

    Get PDF
    Abstract: Brain metastasis (BM) represents a common complication of cancer, and in the modern era requires multi-modal management approaches and multi-disciplinary care. Traditionally, due to the limited efficacy of cytotoxic chemotherapy, treatment strategies are focused on local treatments alone, such as whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and resection. However, the increased availability of molecular-based therapies with central nervous system (CNS) penetration now permits the individualized selection of tailored systemic therapies to be used alongside local treatments. Moreover, the introduction of immune checkpoint inhibitors (ICIs), with demonstrated CNS activity has further revolutionized the management of BM patients. The rapid introduction of these cancer therapeutics into clinical practice, however, has led to a significant dearth in the published literature about the optimal timing, sequencing, and combination of these systemic therapies along with SRS. This manuscript reviews the impact of tumor biology and molecular profiles on the management paradigm for BM patients and critically analyzes the current landscape of SRS, with a specific focus on integration with systemic therapy. We also discuss emerging treatment strategies combining SRS and ICIs, the impact of timing and the sequencing of these therapies around SRS, the effect of corticosteroids, and review post-treatment imaging findings, including pseudo-progression and radiation necrosis

    Combination of EGFR-Directed Tyrosine Kinase Inhibitors (EGFR-TKI) with Radiotherapy in Brain Metastases from Non-Small Cell Lung Cancer: A 2010-2019 Retrospective Cohort Study

    Get PDF
    Introduction: Traditionally, brain metastases have been treated with stereotactic radiosurgery (SRS), whole-brain radiation (WBRT), and/or surgical resection. Non-small cell lung cancers (NSCLC), over half of which carry EGFR mutations, are the leading cause of brain metastases. EGFR-directed tyrosine kinase inhibitors (TKI) have shown promise in NSCLC; but their utility in NSCLC brain metastases (NSCLCBM) remains unclear. This work sought to investigate whether combining EGFR-TKI with WBRT and/or SRS improves overall survival (OS) in NSCLCBM. Methods: A retrospective review of NSCLCBM patients diagnosed during 2010–2019 at a tertiary-care US center was performed and reported following the ‘strengthening the reporting of observational studies in epidemiology’ (STROBE) guidelines. Data regarding socio-demographic and histopathological characteristics, molecular attributes, treatment strategies, and clinical outcomes were collected. Concurrent therapy was defined as the combination of EGFR-TKI and radiotherapy given within 28 days of each other. Results: A total of 239 patients with EGFR mutations were included. Of these, 32 patients had been treated with WBRT only, 51 patients received SRS only, 36 patients received SRS and WBRT only, 18 were given EGFR-TKI and SRS, and 29 were given EGFR-TKI and WBRT. Median OS for the WBRT-only group was 3.23 months, for SRS + WBRT it was 3.17 months, for EGFR-TKI + WBRT 15.50 months, for SRS only 21.73 months, and for EGFR-TKI + SRS 23.63 months. Multivariable analysis demonstrated significantly higher OS in the SRS-only group (HR = 0.38, 95% CI 0.17–0.84, p = 0.017) compared to the WBRT reference group. There were no significant differences in overall survival for the SRS + WBRT combination cohort (HR = 1.30, 95% CI = 0.60, 2.82, p = 0.50), EGFR-TKIs and WBRT combination cohort (HR = 0.93, 95% CI = 0.41, 2.08, p = 0.85), or the EGFR-TKI + SRS cohort (HR = 0.46, 95% CI = 0.20, 1.09, p = 0.07). Conclusions: NSCLCBM patients treated with SRS had a significantly higher OS compared to patients treated with WBRT-only. While sample-size limitations and investigator-associated selection bias may limit the generalizability of these results, phase II/III clinicals trials are warranted to investigate synergistic efficacy of EGFR-TKI and SRS

    DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets

    Get PDF
    Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I–IV (now 1–4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility
    corecore