1,181 research outputs found
Embedded-Cluster Calculations in a Numeric Atomic Orbital Density-Functional Theory Framework
We integrate the all-electron electronic structure code FHI-aims into the
general ChemShell package for solid-state embedding (QM/MM) calculations. A
major undertaking in this integration is the implementation of pseudopotential
functionality into FHI-aims to describe cations at the QM/MM boundary through
effective core potentials and therewith prevent spurious overpolarization of
the electronic density. Based on numeric atomic orbital basis sets, FHI-aims
offers particularly efficient access to exact exchange and second order
perturbation theory, rendering the established QM/MM setup an ideal tool for
hybrid and double-hybrid level DFT calculations of solid systems. We illustrate
this capability by calculating the reduction potential of Fe in the
Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for
(photo-)catalytic water oxidation at TiO2(110).Comment: 12 pages, 4 figure
A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids
We present a numerical method that consistently implements thermal
fluctuations and hydrodynamic interactions to the motion of Brownian particles
dispersed in incompressible host fluids. In this method, the thermal
fluctuations are introduced as random forces acting on the Brownian particles.
The hydrodynamic interactions are introduced by directly resolving the fluid
motions with the particle motion as a boundary condition to be satisfied. The
validity of the method has been examined carefully by comparing the present
numerical results with the fluctuation-dissipation theorem whose analytical
form is known for dispersions of a single spherical particle. Simulations are
then performed for more complicated systems, such as a dispersion composed of
many spherical particles and a single polymeric chain in a solvent.Comment: 6 pages, 8 figure
A new model for simulating colloidal dynamics
We present a new hybrid lattice-Boltzmann and Langevin molecular dynamics
scheme for simulating the dynamics of suspensions of spherical colloidal
particles. The solvent is modeled on the level of the lattice-Boltzmann method
while the molecular dynamics is done for the solute. The coupling between the
two is implemented through a frictional force acting both on the solvent and on
the solute, which depends on the relative velocity. A spherical colloidal
particle is represented by interaction sites at its surface. We demonstrate
that this scheme quantitatively reproduces the translational and rotational
diffusion of a neutral spherical particle in a liquid and show preliminary
results for a charged spherical particle. We argue that this method is
especially advantageous in the case of charged colloids.Comment: For a movie click on the link below Fig
Local Simulation Algorithms for Coulomb Interaction
Long ranged electrostatic interactions are time consuming to calculate in
molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic
framework for simulating charged particles which modifies the dynamics so as to
allow equilibration using a local Hamiltonian. The method introduces an
auxiliary field with constrained dynamics so that the equilibrium distribution
is determined by the Coulomb interaction. We demonstrate the efficiency of the
method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc
Alkali and Alkaline Earth Metal Compounds: Core-Valence Basis Sets and Importance of Subvalence Correlation
Core-valence basis sets for the alkali and alkaline earth metals Li, Be, Na,
Mg, K, and Ca are proposed. The basis sets are validated by calculating
spectroscopic constants of a variety of diatomic molecules involving these
elements. Neglect of correlation in K and Ca compounds will lead to
erratic results at best, and chemically nonsensical ones if chalcogens or
halogens are present. The addition of low-exponent functions to the K and
Ca basis sets is essential for smooth convergence of molecular properties.
Inclusion of inner-shell correlation is important for accurate spectroscopic
constants and binding energies of all the compounds. In basis set
extrapolation/convergence calculations, the explicit inclusion of alkali and
alkaline earth metal subvalence correlation at all steps is essential for K and
Ca, strongly recommended for Na, and optional for Li and Mg, while in Be
compounds, an additive treatment in a separate `core correlation' step is
probably sufficient. Consideration of inner-shell correlation energy in
first-row elements requires inclusion of `deep core' correlation
energy in K and Ca for consistency. The latter requires special CCVZ `deep
core correlation' basis sets. For compounds involving Ca bound to
electronegative elements, additional functions in the basis set are
strongly recommended. For optimal basis set convergence in such cases, we
suggest the sequence CV(D+3d)Z, CV(T+2d)Z, CV(Q+)Z, and CV5Z on calcium.Comment: Molecular Physics, in press (W. G. Richards issue); supplementary
material (basis sets in G98 and MOLPRO formats) available at
http://theochem.weizmann.ac.il/web/papers/group12.htm
Recommended from our members
Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line
Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-PĂ©rot resonator. Reflecting the excited state hyperfine structure of Cesium, âslow lightâ and âfast lightâ behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network
Algorithm for numerical integration of the rigid-body equations of motion
A new algorithm for numerical integration of the rigid-body equations of
motion is proposed. The algorithm uses the leapfrog scheme and the quantities
involved are angular velocities and orientational variables which can be
expressed in terms of either principal axes or quaternions. Due to specific
features of the algorithm, orthonormality and unit norms of the orientational
variables are integrals of motion, despite an approximate character of the
produced trajectories. It is shown that the method presented appears to be the
most efficient among all known algorithms of such a kind.Comment: 4 pages, 1 figur
Dynamics and Scaling of 2D Polymers in a Dilute Solution
The breakdown of dynamical scaling for a dilute polymer solution in 2D has
been suggested by Shannon and Choy [Phys. Rev. Lett. {\bf 79}, 1455 (1997)].
However, we show here both numerically and analytically that dynamical scaling
holds when the finite-size dependence of the relevant dynamical quantities is
properly taken into account. We carry out large-scale simulations in 2D for a
polymer chain in a good solvent with full hydrodynamic interactions to verify
dynamical scaling. This is achieved by novel mesoscopic simulation techniques
- âŠ