181 research outputs found
The Multi-Agent Programming Contest: A r\'esum\'e
The Multi-Agent Programming Contest, MAPC, is an annual event organized since
2005 out of Clausthal University of Technology. Its aim is to investigate the
potential of using decentralized, autonomously acting intelligent agents, by
providing a complex scenario to be solved in a competitive environment. For
this we need suitable benchmarks where agent-based systems can shine. We
present previous editions of the contest and also its current scenario and
results from its use in the 2019 MAPC with a special focus on its suitability.
We conclude with lessons learned over the years.Comment: Submitted to the proceedings of the Multi-Agent Programming Contest
2019, to appear in Springer Lect. Notes Computer Challenges Series
https://www.springer.com/series/1652
Quantum Walks with Non-Orthogonal Position States
Quantum walks have by now been realized in a large variety of different
physical settings. In some of these, particularly with trapped ions, the walk
is implemented in phase space, where the corresponding position states are not
orthogonal. We develop a general description of such a quantum walk and show
how to map it into a standard one with orthogonal states, thereby making
available all the tools developed for the latter. This enables a variety of
experiments, which can be implemented with smaller step sizes and more steps.
Tuning the non-orthogonality allows for an easy preparation of extended states
such as momentum eigenstates, which travel at a well-defined speed with low
dispersion. We introduce a method to adjust their velocity by momentum shifts,
which allows to investigate intriguing effects such as the analog of Bloch
oscillations.Comment: 5 pages, 4 figure
Correlated Markov Quantum Walks
We consider the discrete time unitary dynamics given by a quantum walk on
performed by a particle with internal degree of freedom, called coin
state, according to the following iterated rule: a unitary update of the coin
state takes place, followed by a shift on the lattice, conditioned on the coin
state of the particle. We study the large time behavior of the quantum
mechanical probability distribution of the position observable in for
random updates of the coin states of the following form. The random sequences
of unitary updates are given by a site dependent function of a Markov chain in
time, with the following properties: on each site, they share the same
stationnary Markovian distribution and, for each fixed time, they form a
deterministic periodic pattern on the lattice.
We prove a Feynman-Kac formula to express the characteristic function of the
averaged distribution over the randomness at time in terms of the nth power
of an operator . By analyzing the spectrum of , we show that this
distribution posesses a drift proportional to the time and its centered
counterpart displays a diffusive behavior with a diffusion matrix we compute.
Moderate and large deviations principles are also proven to hold for the
averaged distribution and the limit of the suitably rescaled corresponding
characteristic function is shown to satisfy a diffusion equation.
An example of random updates for which the analysis of the distribution can
be performed without averaging is worked out. The random distribution displays
a deterministic drift proportional to time and its centered counterpart gives
rise to a random diffusion matrix whose law we compute. We complete the picture
by presenting an uncorrelated example.Comment: 37 pages. arXiv admin note: substantial text overlap with
arXiv:1010.400
Recurrence for discrete time unitary evolutions
We consider quantum dynamical systems specified by a unitary operator U and
an initial state vector \phi. In each step the unitary is followed by a
projective measurement checking whether the system has returned to the initial
state. We call the system recurrent if this eventually happens with probability
one. We show that recurrence is equivalent to the absence of an absolutely
continuous part from the spectral measure of U with respect to \phi. We also
show that in the recurrent case the expected first return time is an integer or
infinite, for which we give a topological interpretation. A key role in our
theory is played by the first arrival amplitudes, which turn out to be the
(complex conjugated) Taylor coefficients of the Schur function of the spectral
measure. On the one hand, this provides a direct dynamical interpretation of
these coefficients; on the other hand it links our definition of first return
times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte
Green function approach for scattering quantum walks
In this work a Green function approach for scattering quantum walks is
developed. The exact formula has the form of a sum over paths and always can be
cast into a closed analytic expression for arbitrary topologies and position
dependent quantum amplitudes. By introducing the step and path operators, it is
shown how to extract any information about the system from the Green function.
The method relevant features are demonstrated by discussing in details an
example, a general diamond-shaped graph.Comment: 13 pages, 6 figures, this article was selected by APS for Virtual
Journal of Quantum Information, Vol 11, Iss 11 (2011
Index theory of one dimensional quantum walks and cellular automata
If a one-dimensional quantum lattice system is subject to one step of a
reversible discrete-time dynamics, it is intuitive that as much "quantum
information" as moves into any given block of cells from the left, has to exit
that block to the right. For two types of such systems - namely quantum walks
and cellular automata - we make this intuition precise by defining an index, a
quantity that measures the "net flow of quantum information" through the
system. The index supplies a complete characterization of two properties of the
discrete dynamics. First, two systems S_1, S_2 can be pieced together, in the
sense that there is a system S which locally acts like S_1 in one region and
like S_2 in some other region, if and only if S_1 and S_2 have the same index.
Second, the index labels connected components of such systems: equality of the
index is necessary and sufficient for the existence of a continuous deformation
of S_1 into S_2. In the case of quantum walks, the index is integer-valued,
whereas for cellular automata, it takes values in the group of positive
rationals. In both cases, the map S -> ind S is a group homomorphism if
composition of the discrete dynamics is taken as the group law of the quantum
systems. Systems with trivial index are precisely those which can be realized
by partitioned unitaries, and the prototypes of systems with non-trivial index
are shifts.Comment: 38 pages. v2: added examples, terminology clarifie
Continuous deformations of the Grover walk preserving localization
The three-state Grover walk on a line exhibits the localization effect
characterized by a non-vanishing probability of the particle to stay at the
origin. We present two continuous deformations of the Grover walk which
preserve its localization nature. The resulting quantum walks differ in the
rate at which they spread through the lattice. The velocities of the left and
right-traveling probability peaks are given by the maximum of the group
velocity. We find the explicit form of peak velocities in dependence on the
coin parameter. Our results show that localization of the quantum walk is not a
singular property of an isolated coin operator but can be found for entire
families of coins
Localization of the Grover walks on spidernets and free Meixner laws
A spidernet is a graph obtained by adding large cycles to an almost regular
tree and considered as an example having intermediate properties of lattices
and trees in the study of discrete-time quantum walks on graphs. We introduce
the Grover walk on a spidernet and its one-dimensional reduction. We derive an
integral representation of the -step transition amplitude in terms of the
free Meixner law which appears as the spectral distribution. As an application
we determine the class of spidernets which exhibit localization. Our method is
based on quantum probabilistic spectral analysis of graphs.Comment: 32 page
Random Time-Dependent Quantum Walks
We consider the discrete time unitary dynamics given by a quantum walk on the
lattice performed by a quantum particle with internal degree of freedom,
called coin state, according to the following iterated rule: a unitary update
of the coin state takes place, followed by a shift on the lattice, conditioned
on the coin state of the particle. We study the large time behavior of the
quantum mechanical probability distribution of the position observable in
when the sequence of unitary updates is given by an i.i.d. sequence of
random matrices. When averaged over the randomness, this distribution is shown
to display a drift proportional to the time and its centered counterpart is
shown to display a diffusive behavior with a diffusion matrix we compute. A
moderate deviation principle is also proven to hold for the averaged
distribution and the limit of the suitably rescaled corresponding
characteristic function is shown to satisfy a diffusion equation. A
generalization to unitary updates distributed according to a Markov process is
also provided. An example of i.i.d. random updates for which the analysis of
the distribution can be performed without averaging is worked out. The
distribution also displays a deterministic drift proportional to time and its
centered counterpart gives rise to a random diffusion matrix whose law we
compute. A large deviation principle is shown to hold for this example. We
finally show that, in general, the expectation of the random diffusion matrix
equals the diffusion matrix of the averaged distribution.Comment: Typos and minor errors corrected. To appear In Communications in
Mathematical Physic
Disordered Quantum Walks in one lattice dimension
We study a spin-1/2-particle moving on a one dimensional lattice subject to
disorder induced by a random, space-dependent quantum coin. The discrete time
evolution is given by a family of random unitary quantum walk operators, where
the shift operation is assumed to be deterministic. Each coin is an independent
identically distributed random variable with values in the group of two
dimensional unitary matrices. We derive sufficient conditions on the
probability distribution of the coins such that the system exhibits dynamical
localization. Put differently, the tunneling probability between two lattice
sites decays rapidly for almost all choices of random coins and after arbitrary
many time steps with increasing distance. Our findings imply that this effect
takes place if the coin is chosen at random from the Haar measure, or some
measure continuous with respect to it, but also for a class of discrete
probability measures which support consists of two coins, one of them being the
Hadamard coin.Comment: minor change
- …