7 research outputs found

    Diffusion of small two-dimensional Cu islands on Cu(111) studied with a kinetic Monte Carlo method

    Get PDF
    Diffusion of small two-dimensional Cu islands (containing up to 10 atoms) on Cu(111) has been studied using the newly developed self-learning Kinetic Monte Carlo (SLKMC) method which is based on a database of diffusion processes and their energetics accumulated automatically during the implementation of the SLKMC code. Results obtained from simulations in which atoms hop from one fcc hollow site to another are compared with those obtained from a parallel set of simulations in which the database is supplemented by processes revealed in complementary molecular dynamics simulations at 500K. They include processes involving the hcp (stacking-fault) sites, which facilitate concerted motion of the islands (simultaneous motion of all atoms in the island). A significant difference in the scaling of the effective diffusion barriers with island size is observed in the two cases. In particular, the presence of concerted island motion leads to an almost linear increase in the effective diffusion barrier with size, while its absence accounts for strong size-dependent oscillations and anomalous behavior for trimers and heptamers. We also identify and discuss in detail the key microscopic processes responsible for the diffusion and examine the frequencies of their occurrence, as a function of island size and substrate temperature.Peer reviewe

    Design of 11-Residue Peptides with Unusual Biophysical Properties: Induced Secondary Structure in the Absence of Water

    Get PDF
    AbstractA series of oligopeptides with β-forming and adhesive properties, were synthesized and analyzed for adhesion shear strength, secondary structure, and association properties. The sequences contained related hydrophobic core segments varying in length from 5 to 12 residues and flanked by di- or tri-lysine segments. Three remarkable peptides consisting of just 11 residues with hydrophobic core sequences of FLIVI, IGSII, and IVIGS flanked by three lysine residues gave the highest dry adhesion shear strength and displayed unusual biophysical properties in the presence and absence of water. KKKFLIVIKKK had its highest adhesion strength at 2% (w/v) at pH 12.0 and showed the highest adhesion strength after exposure to water (water resistance). Both KKKIGSIIKKK and KKKIVIGSKKK, at 4% (w/v) at pH 12.0, displayed nearly identical dry shear strength values to that with the FLIVI core sequence. The peptide with IGSII core, however, displayed a lower water resistance and the latter, IVIGS, showed no water resistance, completely delaminating upon soaking in water. These are the smallest peptides with adhesive properties reported to date and show remarkable adhesion strength even at lower concentrations of 0.2% (w/v), which corresponds to 1.6mM. The FLIVI containing peptide adopted a β-sheet secondary structure in water while the IGSII- and IVIGS-containing sequences folded similarly only in the absence of water. Analytical ultracentrifugation studies showed that when the FLIVI sequence adopts β-structure in aqueous solution, it associates into a large molecular weight assembly. The random coils of IGSII and IVIGS showed no tendency to associate at any pH

    Comparative study of anharmonicity: Ni(111), Cu(111), and Ag(111)

    No full text
    We present a comparative study of the structure and the dynamics of the most close packed surface of Ni, Cu, and Ag from near room temperature up to 0.9T(m), using molecular dynamics simulations and interaction potentials from the embedded atom method. Calculated shifts in the surface phonon frequencies, the broadening of their linewidths, and the variations in the mean square vibrational amplitudes of surface atoms, as a function of temperature, indicate that anharmonic effects are small on these surfaces. The surface thermal expansion of these three (111) surfaces is also found to be smaller than that of the respective (100) and (110) surfaces. Additionally, we do not find any premelting or pronounced disordering on these surfaces, in the temperature range considered

    Design Of 11-Residue Peptides With Unusual Biophysical Properties:Induced Secondary Structure In The Absence Of Water

    No full text
    A series of oligopeptides with β-forming and adhesive properties, were synthesized and analyzed for adhesion shear strength, secondary structure, and association properties. The sequences contained related hydrophobic core segments varying in length from 5 to 12 residues and flanked by di- or tri-lysine segments. Three remarkable peptides consisting of just 11 residues with hydrophobic core sequences of FLIVI, IGSII, and IVIGS flanked by three lysine residues gave the highest dry adhesion shear strength and displayed unusual biophysical properties in the presence and absence of water. KKKFLIVIKKK had its highest adhesion strength at 2% (w/v) at pH 12.0 and showed the highest adhesion strength after exposure to water (water resistance). Both KKKIGSIIKKK and KKKIVIGSKKK, at 4% (w/v) at pH 12.0, displayed nearly identical dry shear strength values to that with the FLIVI core sequence. The peptide with IGSII core, however, displayed a lower water resistance and the latter, IVIGS, showed no water resistance, completely delaminating upon soaking in water. These are the smallest peptides with adhesive properties reported to date and show remarkable adhesion strength even at lower concentrations of 0.2% (w/v), which corresponds to 1.6 mM. The FLIVI containing peptide adopted a β-sheet secondary structure in water while the IGSII- and IVIGS-containing sequences folded similarly only in the absence of water. Analytical ultracentrifugation studies showed that when the FLIVI sequence adopts β-structure in aqueous solution, it associates into a large molecular weight assembly. The random coils of IGSII and IVIGS showed no tendency to associate at any pH. © 2008 by the Biophysical Society
    corecore