3 research outputs found

    Changing Patterns of SARS-CoV-2 Seroprevalence: A Snapshot among the General Population in Kuwait

    No full text
    We sought to assess pre-vaccination and post-vaccination seroprevalences of anti-SARS-CoV-2 antibodies in Kuwait and to compare antibody levels between vaccine types. In phase 1 (pre-vaccination period, n = 19,363), blood samples were collected before the launch of COVID-19 vaccination in Kuwait between 1 September and 31 December 2020. Blood samples for phase 2 (post-vaccination period, n = 4973) were collected between 1 September and 30 November 2021. We tested subjects for anti-SARS-CoV-2 antibodies using the DiaSorin LIAISON® SARS-CoV-2 IgM and Trimeric S IgG tests. In the pre-vaccination period, the prevalence of SARS-CoV-2 IgM and IgG was 14.50% (95% CI: 14.01–15.00) and 24.89% (95% CI: 24.29–25.50), respectively. The trend of seropositivity increased with age and was higher for females and non-Kuwaiti participants (p p > 0.05). In contrast, a negative correlation between age and anti-trimeric S IgG titers of BNT162b2-vaccinated subjects was observed (r = −0.062, p = 0.0009). Antibody levels decreased with time after vaccination with both vaccines. Our findings indicate that seroprevalence was very low during the pre-vaccination period (25%) in the general population and was greater than 95% in the vaccinated population in Kuwait. Furthermore, ChAdOx1-nCov-19 and BNT162b2 are effective in generating a similar humoral response

    Changing Patterns of SARS-CoV-2 Seroprevalence: A Snapshot among the General Population in Kuwait

    No full text
    We sought to assess pre-vaccination and post-vaccination seroprevalences of anti-SARS-CoV-2 antibodies in Kuwait and to compare antibody levels between vaccine types. In phase 1 (pre-vaccination period, n = 19,363), blood samples were collected before the launch of COVID-19 vaccination in Kuwait between 1 September and 31 December 2020. Blood samples for phase 2 (post-vaccination period, n = 4973) were collected between 1 September and 30 November 2021. We tested subjects for anti-SARS-CoV-2 antibodies using the DiaSorin LIAISON® SARS-CoV-2 IgM and Trimeric S IgG tests. In the pre-vaccination period, the prevalence of SARS-CoV-2 IgM and IgG was 14.50% (95% CI: 14.01–15.00) and 24.89% (95% CI: 24.29–25.50), respectively. The trend of seropositivity increased with age and was higher for females and non-Kuwaiti participants (p < 0.0001). Interestingly, seroprevalence was significantly higher for those who had received one dose of BNT162b2 (95.21%) than those who had received one dose of ChAdOx1-nCov-19 (92.86%). In addition, those who reported receiving two doses had higher seroprevalence, 96.25%, 95.86%, and 94.93% for ChA-dOx1-nCov-19/AstraZeneca, mix-and-match, and BNT162b2 recipients, respectively. After the second dose, median spike-specific responses showed no significant difference between ChAdOx1-nCov-19 and BNT162b2. Furthermore, statistical analysis showed no significant difference between median anti-trimeric S antibody levels of vaccinated individuals according to sex, age, or nationality (p > 0.05). In contrast, a negative correlation between age and anti-trimeric S IgG titers of BNT162b2-vaccinated subjects was observed (r = −0.062, p = 0.0009). Antibody levels decreased with time after vaccination with both vaccines. Our findings indicate that seroprevalence was very low during the pre-vaccination period (25%) in the general population and was greater than 95% in the vaccinated population in Kuwait. Furthermore, ChAdOx1-nCov-19 and BNT162b2 are effective in generating a similar humoral response

    Changing trends in epidemiology and antifungal susceptibility patterns of six bloodstream Candida species isolates over a 12-year period in Kuwait.

    No full text
    Changing trends in incidence and antifungal susceptibility patterns of six Candida species causing candidemia in Kuwait between 2006-2017 are reported. A total of 2075 isolates obtained from 1448 patients were analyzed. Identity of Candida species isolates was determined by phenotypic methods and confirmed by PCR amplification/PCR-sequencing of rDNA and/or MALDI-TOF MS. Antifungal susceptibility was determined by Etest. C. albicans accounted for 539 (37.22%) cases followed by C. parapsilosis (n = 502, 34.67%), C. tropicalis (n = 210, 14.5%), C. glabrata (n = 148, 10.22%), C. krusei (n = 27, 1.81%) and C. dubliniensis (n = 22, 1.5%). The comparative percent distribution of Candida species causing candidemia between 2006-2011 and 2012-2017 was as follows: C. albicans 41.8% and 33.1%, C. parapsilosis complex 32.01% and 37.04%, C. tropicalis 13.59% and 15.31%, and C. glabrata 8.77% and 11.51%, C. krusei 2.0% and 1.7%, and C. dubliniensis 1.75 and 1.3%, respectively. Three of 371 C. albicans isolates during 2006-2011 and five of 363 during 2012-2017 were resistant to fluconazole. Among C. parapsilosis isolates, one of 310 during 2006-2011 and 21 of 446 during 2012-2017 were resistant to this drug. Furthermore, at an epidemiologic cutoff value (ECV) of ≤0.5 μg/ml, 70.1% C. albicans isolates were wild-type for fluconazole during 2006-2011 as compared to 58.1% during 2012-2017. Likewise, at an ECV of ≤2 μg/ml, 98.0% of C. parapsilosis isolates were wild-type during 2006-2011 as compared to 93.4% during 2012-2017. Clonal spread of fluconazole-resistant C. parapsilosis in one major hospital was documented. An 8.8% shift in favor of non-albicans Candida species with concomitant increase in MICs between the two periods preludes emergence of fluconazole-resistant candidemia cases in Kuwait
    corecore