19 research outputs found

    A systems approach to urban water services in the context of integrated energy and water planning: A City of Cape Town case study

    Get PDF
    The City of Cape Town derives the bulk of its present water supply from surface water resources and is the central water service authority for metropolitan consumers. The City is also a provider of bulk water to neighbouring municipalities. An exploration of the energy consumption for water and sanitation services for the City of Cape Town was conducted with an emphasis on water supply augmentation options for the near future (2011-2030). A systems analysis of municipal urban water services was undertaken to examine the energy requirements of supply alternatives and the efficacy of the alternatives in respect of supply availability and reliability. This was achieved using scenario based analysis incorporating a simple additive value function, to obtain a basic performance score, to rank alternatives and facilitate a quantitative comparison. Utilising the Water Evaluation and Planning hydrological modelling tool, a model for urban water services was developed for the City and used to conduct scenario analyses for a representative portfolio of previously identified options. Within the scope of the research objectives, the scenario analyses examines the direct energy consumption for the provision of water services for the City as influenced by external factors such as population growth, surface water runoff variability, available alternatives and the policies that are adopted which ultimately determine the future planning. It is contended that the modelling process presented here integrates energy and water planning for an assessment of water and energy resources required for future growth, and the optimal measures that could be pursued to reconcile the demand for water and the concomitant energy requirements

    A systems approach to urban water services in the context of integrated energy and water planning: A City of Cape Town case study

    Get PDF
    The City of Cape Town derives the bulk of its present water supply from surface water resources and is the central water service authority for metropolitan consumers. The City is also a provider of bulk water to neighbouring municipalities. An exploration of the energy consumption for water and sanitation services for the City of Cape Town was conducted with an emphasis on water supply augmentation options for the near future (2011-2030). A systems analysis of municipal urban water services was undertaken to examine the energy requirements of supply alternatives and the efficacy of the alternatives in respect of supply availability and reliability. This was achieved using scenario based analysis incorporating a simple additive value function, to obtain a basic performance score, to rank alternatives and facilitate a quantitative comparison. Utilising the Water Evaluation and Planning hydrological modelling tool, a model for urban water services was developed for the City and used to conduct scenario analyses for a representative portfolio of previously identified options. Within the scope of the research objectives, the scenario analyses examines the direct energy consumption for the provision of water services for the City as influenced by external factors such as population growth, surface water runoff variability, available alternatives and the policies that are adopted which ultimately determine the future planning. It is contended that the modelling process presented here integrates energy and water planning for an assessment of water and energy resources required for future growth, and the optimal measures that could be pursued to reconcile the demand for water and the concomitant energy requirements

    Road transport vehicles in South Africa towards 2050: Factors influencing technology choice and implications for fuel supply

    Get PDF
    The South African transport sector is estimated to emit 60 MtCO2eq and require 800 PJ of energy, similar in scale to industrial energy demand and emissions. The sector is forecast to potentially eclipse industry in this regard if conventional vehicle choices and travel modes persist. This paper explores scenarios of transport technology choices and demand in a future of uncertain fuel and technology costs, and the consequences for energy supply and greenhouse gas emissions. It explores the extent of electric vehicle (EV) adoption and the implication of fuel migration from petroleum products. The preference for alternative fuels such as hydrogen, liquid biofuels and natural gas is also investigated. The evolution of road transport in South Africa towards 2050 is investigated utilising the South African TIMES model, a full energy sector least-cost optimisation model that relies on a rich technological database of the entire energy supply and demand system. Hydrogen fuel cell vehicles are shown to be a viable option in freight and public transport, potentially meeting 70% of travel demand by 2045. The private passenger and light commercial sectors emerge as the main market for electric vehicles, potentially accounting for 80% of new vehicle sales by 2045. Electricity as a transport fuel could account for 30% of fuel supply and reduce transport emissions to half of present day estimates. However, the key uncertainty driving EV adoption is future vehicle costs and crude oil prices, which could dampen EV uptake. Another main finding is that petroleum-dependent vehicles remain an important vehicle class, and that re-investment in existing crude oil refineries to conform to Euro5 standards is a likely requirement. There seems to be little indication, however, that additional refining capacity would be economically viable within the planning horizon. Document type: Articl

    Road transport vehicles in South Africa towards 2050: Factors influencing technology choice and implications for fuel supply

    Get PDF
    The South African transport sector is estimated to emit 60 MtCO2eq and require 800 PJ of energy, similar in scale to industrial energy demand and emissions. The sector is forecast to potentially eclipse industry in this regard if conventional vehicle choices and travel modes persist. This paper explores scenarios of transport technology choices and demand in a future of uncertain fuel and technology costs, and the consequences for energy supply and greenhouse gas emissions. It explores the extent of electric vehicle (EV) adoption and the implication of fuel migration from petroleum products. The preference for alternative fuels such as hydrogen, liquid biofuels and natural gas is also investigated. The evolution of road transport in South Africa towards 2050 is investigated utilising the South African TIMES model, a full energy sector least-cost optimisation model that relies on a rich technological database of the entire energy supply and demand system. Hydrogen fuel cell vehicles are shown to be a viable option in freight and public transport, potentially meeting 70% of travel demand by 2045. The private passenger and light commercial sectors emerge as the main market for electric vehicles, potentially accounting for 80% of new vehicle sales by 2045. Electricity as a transport fuel could account for 30% of fuel supply and reduce transport emissions to half of present day estimates. However, the key uncertainty driving EV adoption is future vehicle costs and crude oil prices, which could dampen EV uptake. Another main finding is that petroleum-dependent vehicles remain an important vehicle class, and that re-investment in existing crude oil refineries to conform to Euro5 standards is a likely requirement. There seems to be little indication, however, that additional refining capacity would be economically viable within the planning horizon

    Decarbonisation and the transport sector: A socio-economic analysis of transport sector futures in South Africa

    Get PDF
    Globally, governments are investigating transport solutions that not only reduce their national emissions but also decrease their reliance on energy imports and increase clean air in cities and towns. A transition in the transport sector is seemingly inevitable considering these priorities. This study outlines some key socio-economic implications of a transition in South Africa’s transport system, building on work previously done. The focus was on a rapid decarbonisation of the South African economy and the potential impacts of implementing efficiency improvements in the transport sector, including mode-switching. The overall finding was that a more ambitious decarbonisation target would have marginal impact on the economy relative to South Africa’s nationally-determined contribution. It was further found that the implementation of efficiency improvements and changes in behaviour (decreased mileage, increased occupancy, increased rail use and increased use of public transport) could significantly reduce the burden on the economy of a higher GHG emission reduction target

    Water Energy Nexus - Model Inputs

    No full text
    Dataset for SATIM-W for Energy Water Nexus Project funded by the World Bank<br

    Water supply and irrigation demand variability

    No full text
    Water supply and irrigation demand variability by water management area in South Africa. From the Water Energy Nexus project. Pulled from the Long Term Adaptation Scenarios by James Cullis. This data table contains two sets of information: The left set is the percentage change from average annual irrigation demand. The right set is the percentage change from average annual total water supply. </div

    Agriculture Sector Energy Demand

    No full text
    TCH_AGR is the agricultural sector demand side data

    Eskom Power Station Fuel Consumption

    No full text
    This is data published as a pdf by Eskom that gets updated every year. <br

    Water Energy Nexus - Model

    No full text
    This dataset contains the SATIM-W model runs and assumptions for the study.The interdependency between water and energy is growing in importance as demands for both water and energy increase. Several regions of the world are already experiencing water and energy security challenges, which adversely affect sustainable economic growth. In addition, the world’s population is expected to grow, which will in turn increase demand for water and energy, especially in fast-growing developing countries. The project aims to represent the evolving cost of water to the technologies represented in an energy system’s planning model, ERC’s SATIM model, by representing the planned augmentation schemes for key water supply regions to 2050 and their projected costs and capacities. This will thus be a water-smart energy planning model (SATIM-W) which is hoped will give powerful insights into infrastructure decisions when combined with climate scenarios.</div
    corecore