12 research outputs found
Development of Advanced 3D-Printed Solid Dosage Pediatric Formulations for HIV Treatment
The combination of lopinavir/ritonavir remains one of the first-line therapies for the initial antiretroviral regimen in pediatric HIV-infected children. However, the implementation of this recommendation has faced many challenges due to cold-chain requirements, high alcohol content, and unpalatability for ritonavir-boosted lopinavir syrup. In addition, the administration of crushed tablets has shown a detriment for the oral bioavailability of both drugs. Therefore, there is a clinical need to develop safer and better formulations adapted to children’s needs. This work has demonstrated, for the first time, the feasibility of using direct powder extrusion 3D printing to manufacture personalized pediatric HIV dosage forms based on 6 mm spherical tablets. H-bonding between drugs and excipients (hydroxypropyl methylcellulose and polyethylene glycol) resulted in the formation of amorphous solid dispersions with a zero-order sustained release profile, opposite to the commercially available formulation Kaletra, which exhibited marked drug precipitation at the intestinal pH
Design, Synthesis, and Antipoliferative Activities of Novel Substituted Imidazole-Thione Linked Benzotriazole Derivatives
A new series of benzotriazole moiety bearing substituted imidazol-2-thiones at N1 has been designed, synthesized and evaluated for in vitro anticancer activity against the different cancer cell lines MCF-7(breast cancer), HL-60 (Human promyelocytic leukemia), and HCT-116 (colon cancer). Most of the benzotriazole analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, BI9 showed potent activity against the cancer cell lines such as MCF-7, HL-60 and HCT-116 with IC50 3.57, 0.40 and 2.63 µM, respectively. Compound BI9 was taken up for elaborate biological studies and the HL-60 cells in the cell cycle were arrested in G2/M phase. Compound BI9 showed remarkable inhibition of tubulin polymerization with the colchicine binding site of tubulin. In addition, compound BI9 promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2. These results provide guidance for further rational development of potent tubulin polymerization inhibitors for the treatment of cancer
HPLC Determination of Imidazoles with Variant Anti-Infective Activity in Their Dosage Forms and Human Plasma
A suitable HPLC method has been selected and validated for rapid simultaneous separation and determination of four imidazole anti-infective drugs, secnidazole, omeprazole, albendazole, and fenbendazole, in their final dosage forms, in addition to human plasma within 5 min. The method suitability was derived from the superiority of using the environmentally benign solvent, methanol over acetonitrile as a mobile phase component in respect of safety issues and migration times. Separation of the four anti-infective drugs was performed on a Thermo Scientific® BDS Hypersil C8 column (5 µm, 2.50 × 4.60 mm) using a mobile phase consist of MeOH: 0.025 M KH2PO4 (70:30, v/v) adjusted to pH 3.20 with ortho-phosphoric acid at room temperature. The flow rate was 1.00 mL/min and maximum absorption was measured with UV detector set at 300 nm. Limits of detection were reported to be 0.41, 0.13, 0.18, and 0.15 µg/mL for secnidazole, omeprazole, albendazole, and fenbendazole, respectively, showing a high degree of the method sensitivity. The method of analysis was validated according to Food and Drug Administration (FDA)guidelines for the determination of the drugs, either in their dosage forms with highly precise recoveries, or clinically in human plasma, especially regarding pharmacokinetic and bioequivalence studies
Accumulation of oxysterols in the erythrocytes of COVID-19 patients as a biomarker for case severity
Abstract Background Due to the high risk of COVID-19 patients developing thrombosis in the circulating blood, atherosclerosis, and myocardial infarction, it is necessary to study the lipidome of erythrocytes. Specifically, we examined the pathogenic oxysterols and acylcarnitines in the erythrocyte homogenate of COVID-19 patients. These molecules can damage cells and contribute to the development of these diseases. Methods This study included 30 patients and 30 healthy volunteers. The erythrocyte homogenate extract was analyzed using linear ion trap mass spectrometry combined with high-performance liquid chromatography. The concentrations of oxysterols and acylcarnitines in erythrocyte homogenates of healthy individuals and COVID-19 patients were measured. Elevated levels of toxic biomarkers in red blood cells could initiate oxidative stress, leading to a process known as Eryptosis. Results In COVID-19 patients, the levels of five oxysterols and six acylcarnitines in erythrocyte homogenates were significantly higher than those in healthy individuals, with a p-value of less than 0.05. The mean total concentration of oxysterols in the red blood cells of COVID-19 patients was 23.36 ± 13.47 μg/mL, while in healthy volunteers, the mean total concentration was 4.92 ± 1.61 μg/mL. The 7-ketocholesterol and 4-cholestenone levels were five and ten times higher, respectively, in COVID-19 patients than in healthy individuals. The concentration of acylcarnitines in the red blood cell homogenate of COVID-19 patients was 2 to 4 times higher than that of healthy volunteers on average. This finding suggests that these toxic biomarkers may cause the red blood cell death seen in COVID-19 patients. Conclusions The abnormally high levels of oxysterols and acylcarnitines found in the erythrocytes of COVID-19 patients were associated with the severity of the cases, complications, and the substantial risk of thrombosis. The concentration of oxysterols in the erythrocyte homogenate could serve as a diagnostic biomarker for COVID-19 case severity. Graphical abstrac
Selective COX-2 Inhibitors: Road from Success to Controversy and the Quest for Repurposing
The introduction of selective COX-2 inhibitors (so-called ‘coxibs’) has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs ‘controversial me-too’ saga increased substantially, inferring to the risk of cardiovascular complications, subsequently leading to the voluntary withdrawal of coxibs (e.g., rofecoxib and valdecoxib) from the market. For instance, the makers (Pfizer and Merck) had to allegedly settle individual claims of cardiovascular hazards from celecoxib and valdecoxib. Undoubtedly, the lessons drawn from this saga revealed the flaws in drug surveillance and regulation, and taught science to pursue a more integrated translational approach for data acquisition and interpretation, prompting science-based strategies of risk avoidance in order to sustain the value of such drugs, rather than their withdrawal. Looking forward, coxibs are now being studied for repurposing, given their possible implications in the management of a myriad of diseases, including cancer, epilepsy, psychiatric disorders, obesity, Alzheimer’s disease, and so on. This article briefly summarizes the development of COX-2 inhibitors to their market impression, followed by the controversy related to their toxicity. In addition, the events recollected in hindsight (the past lessons), the optimistic step towards drug repurposing (the present), and the potential for forthcoming success (the future) are also discussed
A green approach to the analysis of co-administered ampicillin/sulbactam and paracetamol in human urine
The novelty of this work is the simultaneous analysis of sulbactam (SUL), ampicillin (AMP), and paracetamol (PARA) in human urine samples, using the environmentally benign RP-HPLC method. A C18 column was used in chromatographic separation using potassium dihydrogen phosphate (10 mmol L–1, pH 5)/ethanol (90 %, V/V) as the mobile phase; flow rate was 1.00 mL min–1. UV detection at 220 nm was used for quantification. The proposed method showed good linearity in the concentration ranges of 2.20–250.00 μg mL–1 for SUL, 2.50–250.00 μg mL–1 for PARA, and 14.50–250.00 μg mL–1 for AMP. Direct injection of urine samples with no prior extraction was performed. This method was found successful in moving towards greener studies of drugs’ urinary excretion, by decreasing hazardous solvent consumption and waste. Moreover, the method was applied to investigate the urinary excretion of the drugs and possible interaction between ampicillin and paracetamol
The Anticancer Activity for the Bumetanide-Based Analogs via Targeting the Tumor-Associated Membrane-Bound Human Carbonic Anhydrase-IX Enzyme
The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4–23.7 nM) and have an excellent selectivity profile (SI = 14.5–804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds’ structure–activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies
Secnidazole Is a Promising Imidazole Mitigator of <i>Serratia marcescens</i> Virulence
Serratia marcescens is an opportunistic pathogen that causes diverse nosocomial infections. S. marcescens has developed considerable resistance to different antibiotics and is equipped with an armory of virulence factors. These virulence factors are regulated in S. marcescens by an intercellular communication system termed quorum sensing (QS). Targeting bacterial virulence and QS is an interesting approach to mitigating bacterial pathogenesis and overcoming the development of resistance to antimicrobials. In this study, we aimed to evaluate the anti-virulence activities of secnidazole on a clinical isolate of S. marcescens. The effects of secnidazole at sub-inhibitory concentrations (sub-MICs) on virulence factors, swarming motility, biofilm formation, proteases, hemolysin activity, and prodigiosin production were evaluated in vitro. Secnidazole’s protective activity against S. marcescens pathogenesis was assessed in vivo in mice. Furthermore, a molecular docking study was conducted to evaluate the binding ability of secnidazole to the S. marcescens SmaR QS receptor. Our findings showed that secnidazole at sub-MICs significantly reduced S. marcescens virulence factor production in vitro and diminished its pathogenesis in mice. The insilico docking study revealed a great ability of secnidazole to competitively hinder the binding of the autoinducer to the SmaR QS receptor. In conclusion, secnidazole is a promising anti-virulence agent that may be used to control infections caused by S. marcescens
Hiring of the Anti-Quorum Sensing Activities of Hypoglycemic Agent Linagliptin to Alleviate the Pseudomonas aeruginosa Pathogenesis
Bacteria communicate with each other using quorum sensing (QS) which works in an inducer/receptor manner. QS plays the main role in orchestrating diverse bacterial virulence factors. Pseudomonas aeruginosa is one of the most clinically important bacterial pathogens that can cause infection in almost all body tissues. Besides its efficient capability to develop resistance to different antibiotics, P. aeruginosa acquires a huge arsenal of virulence factors that are controlled mainly by QS. Challenging QS with FDA-approved drugs and natural products was proposed as a promising approach to mitigate bacterial virulence enabling the host immunity to complete the eradication of bacterial infection. The present study aims to evaluate the dipeptidase inhibitor-4 inhibitor hypoglycemic linagliptin anti-QS and anti-virulence activities against P. aeruginosa in vitro, in vivo, and in silico. The current results revealed the significant ability to diminish the production of protease and pyocyanin, motility, and biofilm formation in P. aeruginosa. Furthermore, the histopathological examination of liver and kidney tissues of mice injected with linagliptin-treated bacteria showed an obvious reduction of pathogenesis. Linagliptin downregulation to QS-encoding genes, besides the virtual ability to interact with QS receptors, indicates its anti-QS activities. In conclusion, linagliptin is a promising anti-virulence and anti-QS candidate that can be used solely or in combination with traditional antimicrobial agents in the treatment of P. aeruginosa aggressive infections
Anti-Quorum Sensing Activities of Gliptins against <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i>
The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins’ binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics