270 research outputs found
Diamond nanophotonics
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The burgeoning field of nanophotonics has grown to be a major research area, primarily because of the ability to control and manipulate single quantum systems (emitters) and single photons on demand. For many years, studying nanophotonic phenomena was limited to traditional semiconductors (including silicon and GaAs) and experiments were carried out predominantly at cryogenic temperatures. In the last decade, however, diamond has emerged as a new contender to study photonic phenomena at the nanoscale. Offering a plethora of quantum emitters that are optically active at room temperature and ambient conditions, diamond has been exploited to demonstrate super-resolution microscopy and realize entanglement, Purcell enhancement, and other quantum and classical nanophotonic effects. Elucidating the importance of diamond as a material, this progress report highlights the recent achievements in the field of diamond nanophotonics, and conveys a roadmap for future experiments and technological advancements
A study of the ferromagnetic transition of in nanometer thick bilayers with , , Au and Cr: Signature of injected carriers in the pseudogap regime
The hypothesis regarding the existence of uncorrelated pre-formed pairs in
the pseudogap regime of superconducting is tested experimentally
using bilayers of and the itinerant ferromagnet . In
our study, we monitor the influence of on , the
ferromagnetic ordering temperature of . Here, is the temperature
of maximum dM/dT or dR/dT where M and R are the magnetization and resistance of
, respectively. We compare the results with similar measurements
carried out on bilayers of , and with
. We find that in bilayers made of underdoped 10 nm /5
nm , the values are shifted to lower temperatures by up to 6-8 K
as compared to K of the 5 nm thick reference film.
In contrast, in the other type of bilayers, which are not in the pseudogap
regime near , only a smaller shift of up to 2 K is observed. These
differences are discussed in terms of a proximity effect, where carriers from
the layer are injected into the layer and vice versa.
We suggest that correlated electrons in the pseudogap regime of
are responsible for the observed large shifts.Comment: 9 figure
Engineering chromium related single photon emitters in single crystal diamond
Color centers in diamond as single photon emitters, are leading candidates
for future quantum devices due to their room temperature operation and
photostability. The recently discovered chromium related centers are
particularly attractive since they possess narrow bandwidth emission and a very
short lifetime. In this paper we investigate the fabrication methodologies to
engineer these centers in monolithic diamond. We show that the emitters can be
successfully fabricated by ion implantation of chromium in conjunction with
oxygen or sulfur. Furthermore, our results indicate that the background
nitrogen concentration is an important parameter, which governs the probability
of success to generate these centers.Comment: 14 pages, 5 figure
Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy
(NV) centers in diamond is demonstrated. The electric field penetration into
diamond and the loss of the guided mode are measured. The results indicate that
the GaP-diamond system could be useful for realizing coupled microcavity-NV
devices for quantum information processing in diamond.Comment: 4 pages 4 figure
Synthesis of luminescent europium defects in diamond
© 2014 Macmillan Publishers Limited. All rights reserved. Lanthanides are vital components in lighting, imaging technologies and future quantum memory applications owing to their narrow optical transitions and long spin coherence times. Recently, diamond has become a pre-eminent platform for the realisation of many experiments in quantum information science. Here we demonstrate a promising approach to incorporate Eu ions into diamond, providing a means to harness the exceptional characteristics of both lanthanides and diamond in a single material. Polyelectrolytes are used to electrostatically assemble Eu(III) chelate molecules on diamond and subsequently chemical vapour deposition is employed for the diamond growth. Fluorescence measurements show that the Eu atoms retain the characteristic optical signature of Eu(III) upon incorporation into the diamond lattice. Computational modelling supports the experimental findings, corroborating that Eu(III) in diamond is a stable configuration. The formed defects demonstrate the outstanding chemical control over the incorporation of impurities into diamond enabled by the electrostatic assembly together with chemical vapour deposition growth
Classical 5D fields generated by a uniformly accelerated point source
Gauge fields associated with the manifestly covariant dynamics of particles
in spacetime are five-dimensional. In this paper we explore the old
problem of fields generated by a source undergoing hyperbolic motion in this
framework. The 5D fields are computed numerically using absolute time
-retarded Green-functions, and qualitatively compared with Maxwell fields
generated by the same motion. We find that although the zero mode of all fields
coincides with the corresponding Maxwell problem, the non-zero mode should
affect, through the Lorentz force, the observed motion of test particles.Comment: 36 pages, 8 figure
- …