3 research outputs found

    Minimum error discrimination of Pauli channels

    Full text link
    We solve the problem of discriminating with minimum error probability two given Pauli channels. We show that, differently from the case of discrimination between unitary transformations, the use of entanglement with an ancillary system can strictly improve the discrimination, and any maximally entangled state allows to achieve the optimal discrimination. We also provide a simple necessary and sufficient condition in terms of the structure of the channels for which the ultimate minimum error probability can be achieved without entanglement assistance. When such a condition is satisfied, the optimal input state is simply an eigenstate of one of the Pauli matrices.Comment: 8 pages, no figure

    Trace distance from the viewpoint of quantum operation techniques

    Get PDF
    In the present paper, the trace distance is exposed within the quantum operations formalism. The definition of the trace distance in terms of a maximum over all quantum operations is given. It is shown that for any pair of different states, there are an uncountably infinite number of maximizing quantum operations. Conversely, for any operation of the described type, there are an uncountably infinite number of those pairs of states that the maximum is reached by the operation. A behavior of the trace distance under considered operations is studied. Relations and distinctions between the trace distance and the sine distance are discussed.Comment: 26 pages, no figures. The bibliography is extended, explanatory improvement

    Symmetry protection of measurement-based quantum computation in ground states

    Full text link
    The two-dimensional cluster state, a universal resource for measurement-based quantum computation, is also the gapped ground state of a short-ranged Hamiltonian. Here, we examine the effect of perturbations to this Hamiltonian. We prove that, provided the perturbation is sufficiently small and respects a certain symmetry, the perturbed ground state remains a universal resource. We do this by characterising the operation of an adaptive measurement protocol throughout a suitable symmetry-protected quantum phase, relying on generic properties of the phase rather than any analytic control over the ground state.Comment: 20 pages plus appendices, 11 figures, comments very welcome; v2 minor corrections and additional references; v3 published version with minor correction
    corecore