11 research outputs found
Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol
A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of crypt
Experimental demonstration of quantum fully homomorphic encryption with application in a two-party secure protocol
A fully homomorphic encryption system hides data from unauthorized parties, while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use-cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realisation of a quantum fully homomorphic encryption scheme. We further present a toy two-party secure computation task enabled by our scheme. Finally, as part of our implementation, we also demonstrate a post-selective two-qubit linear optical controlled-phase gate with a much higher post-selection success probability (1/2) when compared to alternate implementations, e.g. with post-selective controlled-Z or controlled-X gates (1/9).</p
Imaging the Ettingshausen effect and cryogenic thermoelectric cooling in a van der Waals semimetal
Attaining viable thermoelectric cooling at cryogenic temperatures is of major
fundamental and technological interest for novel electronics and quantum
materials applications. In-device temperature control can provide a more
efficient and precise thermal environment management as compared to the
conventional global cooling. Here we develop nanoscale cryogenic imaging of a
magneto-thermoelectric effect and demonstrate absolute cooling and an ultrahigh
Ettingshausen effect in exfoliated WTe2 Weyl semimetal flakes at liquid He
temperatures. Application of a current and perpendicular magnetic field gives
rise to cooling via generation of electron-hole pairs on one side of the sample
and heating by their recombination at the opposite side. In contrast to bulk
materials, the cooling process is found to be nonmonotonic in magnetic field
and device size. The derived model of magneto-thermoelectricity in mesoscopic
semimetal devices shows that the cooling efficiency and the induced temperature
profiles are governed by the interplay between sample geometry, electron-hole
recombination length, magnetic field, and flake and substrate heat
conductivities. The findings open the way for direct integration of microscopic
thermoelectric cooling and for temperature landscape engineering in novel van
der Waals devices
Long-range nontopological edge currents in charge-neutral graphene
Van der Waals heterostructures display numerous unique electronic properties. Nonlocal measurements, wherein a voltage is measured at contacts placed far away from the expected classical flow of charge carriers, have been widely used in the search for novel transport mechanisms, including dissipationless spin and valley transport1-9, topological charge-neutral currents10-12, hydrodynamic flows13 and helical edge modes14-16. Monolayer1-5,10,15-19, bilayer9,11,14,20 and few-layer21 graphene, transition-metal dichalcogenides6,7 and moiré superlattices8,10,12 have been found to display pronounced nonlocal effects. However, the origin of these effects is hotly debated3,11,17,22-24. Graphene, in particular, exhibits giant nonlocality at charge neutrality1,15-19, a striking behaviour that has attracted competing explanations. Using a superconducting quantum interference device on a tip (SQUID-on-tip) for nanoscale thermal and scanning gate imaging25, here we demonstrate that the commonly occurring charge accumulation at graphene edges23,26-31 leads to giant nonlocality, producing narrow conductive channels that support long-range currents. Unexpectedly, although the edge conductance has little effect on the current flow in zero magnetic field, it leads to field-induced decoupling between edge and bulk transport at moderate fields. The resulting giant nonlocality at charge neutrality and away from it produces exotic flow patterns that are sensitive to edge disorder, in which charges can flow against the global electric field. The observed one-dimensional edge transport is generic and nontopological and is expected to support nonlocal transport in many electronic systems, offering insight into the numerous controversies and linking them to long-range guided electronic states at system edges