1,074 research outputs found

    Polarization rotation, reference frames and Mach's principle

    Full text link
    Polarization of light rotates in a gravitational field. The accrued phase is operationally meaningful only with respect to a local polarization basis. In stationary space-times, we construct local reference frames that allow us to isolate the Machian gravimagnetic effect from the geodetic (mass) contribution to the rotation. The Machian effect is supplemented by the geometric term that arises from the choice of standard polarizations. The phase accrued along a close trajectory is gauge-independent and is zero in the Schwarzschild space-time. The geometric term may give a dominant contribution to the phase. We calculate polarization rotation for several trajectories and find it to be more significant than is usually believed, pointing to its possible role as a future gravity probe.Comment: 4 pages. Final versio

    Discord and quantum computational resources

    Full text link
    Discordant states appear in a large number of quantum phenomena and seem to be a good indicator of divergence from classicality. While there is evidence that they are essential for a quantum algorithm to have an advantage over a classical one, their precise role is unclear. We examine the role of discord in quantum algorithms using the paradigmatic framework of `restricted distributed quantum gates' and show that manipulating discordant states using local operations has an associated cost in terms of entanglement and communication resources. Changing discord reduces the total correlations and reversible operations on discordant states usually require non-local resources. Discord alone is, however, not enough to determine the need for entanglement. A more general type of similar quantities, which we call K-discord, is introduced as a further constraint on the kinds of operations that can be performed without entanglement resources.Comment: Closer to published versio

    Unified Brane Gravity: Cosmological Dark Matter from Scale Dependent Newton Constant

    Full text link
    We analyze, within the framework of unified brane gravity, the weak-field perturbations caused by the presence of matter on a 3-brane. Although deviating from the Randall-Sundrum approach, the masslessness of the graviton is still preserved. In particular, the four-dimensional Newton force law is recovered, but serendipitously, the corresponding Newton constant is shown to be necessarily lower than the one which governs FRW cosmology. This has the potential to puzzle out cosmological dark matter. A subsequent conjecture concerning galactic dark matter follows.Comment: 6 pages, to be published in Phys. Rev.

    Photorefractive properties of Ce- and Ca-doped Sr0.6Ba0.4Nb2O6

    Get PDF
    We present the results of experimental study of the absorption coefficient, two-beam photorefractive coupling constant, and photorefractive response time of a doubly Ce- and Ca-doped Sr0.6Ba0.4Nb2O6. This crystal displays enhanced photorefractive response at near infrared wavelengths when compared to Ce-doped SBN:60. The temperature dependence of the coupling constant over the range from –30 to 40 °C has also been studied

    The clash of symmetries in a Randall-Sundrum-like spacetime

    Get PDF
    We present a toy model that exhibits clash-of-symmetries style Higgs field kink configurations in a Randall-Sundrum-like spacetime. The model has two complex scalar fields Phi_{1,2}, with a sextic potential obeying global U(1)xU(1) and discrete Phi_1 Phi_2 interchange symmetries. The scalar fields are coupled to 4+1 dimensional gravity endowed with a bulk cosmological constant. We show that the coupled Einstein-Higgs field equations have an interesting analytic solution provided the sextic potential adopts a particular form. The 4+1 metric is shown to be that of a smoothed-out Randall-Sundrum type of spacetime. The thin-brane Randall-Sundrum limit, whereby the Higgs field kinks become step functions, is carefully defined in terms of the fundamental parameters in the action. The ``clash of symmetries'' feature, defined in previous papers, is manifested here through the fact that both of the U(1) symmetries are spontaneously broken at all non-asymptotic points in the extra dimension ww. One of the U(1)'s is asymptotically restored as w --> -infinity, with the other U(1) restored as w --> +infinity. The spontaneously broken discrete symmetry ensures topological stability. In the gauged version of this model we find new flat-space solutions, but in the warped metric case we have been unable to find any solutions with nonzero gauge fields.Comment: 15 pages, 5 figures; minor changes including added references and an updated figure; to appear in Phys Rev

    High Resolution Polar Kerr Effect Measurements of Sr2RuO4: Evidence for Broken Time Reversal Symmetry in the Superconducting State

    Full text link
    Polar Kerr effect in the spin-triplet superconductor Sr2RuO4 was measured with high precision using a Sagnac interferometer with a zero-area Sagnac loop. We observed non-zero Kerr rotations as big as 65 nanorad appearing below Tc in large domains. Our results imply a broken time reversal symmetry state in the superconducting state of Sr2RuO4, similar to He3-A

    Quantum discord and local demons

    Full text link
    Quantum discord was proposed as a measure of the "quantumness" of correlations. There are at least three different discord-like quantities, two of which determine the difference between the efficiencies of a Szilard's engine under different sets of restrictions. The three discord measures vanish simulataneosly. We introduce an easy way to test for zero discord, relate it to the Cerf-Adami conditional entropy and show that there is no relation between the discord and the local disitnguishability.Comment: 7 pages, RevTeX. Some minor changes after comments from colleagues, some references added. Similar to published versio

    Clock transition by continuous dynamical decoupling of a three-level system

    Get PDF
    We present a novel continuous dynamical decoupling scheme for the construction of a robust qubit in a three-level system. By means of a clock transition adjustment, we first show how robustness to environmental noise is achieved, while eliminating drive-noise, to first-order. We demonstrate this scheme with the spin sub-levels of the NV-centre's electronic ground state. By applying drive fields with moderate Rabi frequencies, the drive noise is eliminated and an improvement of 2 orders of magnitude in the coherence time is obtained compared to the pure dephasing time. We then show how the clock transition adjustment can be tuned to eliminate also the second-order effect of the environmental noise with moderate drive fields. A further improvement of more than 1 order of magnitude in the coherence time is expected and confirmed by simulations. Hence, our scheme prolongs the coherence time towards the lifetime-limit using a relatively simple experimental setup.Comment: 7 pages, 5 figure

    Photon polarization and geometric phase in general relativity

    Full text link
    Rotation of polarization in an external gravitational field is one of the effects of general relativity that can serve as a basis for its precision tests. A careful analysis of reference frames is crucial for a proper evaluation of this effect. We introduce an operationally-motivated local reference frame that allows for a particularly simple description. We present a solution of null geodesics in Kerr space-time that is organized around a new expansion parameter, allowing a better control of the series, and use it to calculate the resulting polarization rotation. While this rotation depends on the reference-frame convention, we demonstrate a gauge-independent geometric phase for closed paths in general space-times.Comment: 17 pages; published version of a companion paper to arXiv:1107.127
    • …
    corecore