2 research outputs found

    Privacy-Preserving Chaotic Extreme Learning Machine with Fully Homomorphic Encryption

    Full text link
    The Machine Learning and Deep Learning Models require a lot of data for the training process, and in some scenarios, there might be some sensitive data, such as customer information involved, which the organizations might be hesitant to outsource for model building. Some of the privacy-preserving techniques such as Differential Privacy, Homomorphic Encryption, and Secure Multi-Party Computation can be integrated with different Machine Learning and Deep Learning algorithms to provide security to the data as well as the model. In this paper, we propose a Chaotic Extreme Learning Machine and its encrypted form using Fully Homomorphic Encryption where the weights and biases are generated using a logistic map instead of uniform distribution. Our proposed method has performed either better or similar to the Traditional Extreme Learning Machine on most of the datasets.Comment: 26 pages; 1 Figure; 7 Tables. arXiv admin note: text overlap with arXiv:2205.1326

    Privacy-Preserving Wavelet Neural Network with Fully Homomorphic Encryption

    Full text link
    The main aim of Privacy-Preserving Machine Learning (PPML) is to protect the privacy and provide security to the data used in building Machine Learning models. There are various techniques in PPML such as Secure Multi-Party Computation, Differential Privacy, and Homomorphic Encryption (HE). The techniques are combined with various Machine Learning models and even Deep Learning Networks to protect the data privacy as well as the identity of the user. In this paper, we propose a fully homomorphic encrypted wavelet neural network to protect privacy and at the same time not compromise on the efficiency of the model. We tested the effectiveness of the proposed method on seven datasets taken from the finance and healthcare domains. The results show that our proposed model performs similarly to the unencrypted model.Comment: 17 pages; 3 figures, 10 table
    corecore