5 research outputs found

    The influence of geometrical shapes of stenosis on the blood flow in stenosed artery

    Get PDF
    The present work was carried out to investigate the blood flow behavior and the severity of blockage caused in the arterial passage due to the different geometries such as elliptical, trapezium and triangular shapes of stenosis. The study was conducted with respect to various sizes of stenosis in terms of 70%, 80% and 90% area blockage of the arterial blood flow. The study was carried out numerically with the help of advance computational fluid dynamic software. It was found that the shape of the stenosis plays an important role in overall pressure drop across the blockage region of artery. The highest level of pressure drop was observed for trapezoidal shape of stenosis followed by elliptical and then by triangular shaped stenosis. The wall shear stress across the stenosis is great for trapezoidal shape followed by triangular and elliptical stenosis for same blockage area in the artery

    Applicable Solution for a Class of Ordinary Differential Equations with Singularity

    Get PDF
    Boundary value problems arise in many real applications such as nanofluids and other areas of applied sciences. The temperature/nanoparticles concentration are usually expressed as singular 2ndorder ODEs. So, it is a challenge to obtain the exact solution of these problems due to the difficulty of the singularity encountered in the governing equations. By means of a suitable transformation, a direct approach is introduced to solve a general class of 2nd-order ODEs. The efficiency of the obtained results is validated through selected problems in the literature. It is found that several existing solutions can be deduced as special cases of our generalized one. Moreover, the present results may be invested for similar future problems in fluid mechanics, especially nanofluids
    corecore