11,658 research outputs found

    Topological kink states at a tilt boundary in gated multi-layer graphene

    Full text link
    The search for new realization of topologically protected edge states is an active area of research. We show that a tilt boundary in gated multi-layer graphene supports topologically protected gapless kink states, associated with quantum valley Hall insulator (QVH). We investigate such kink states from two perspectives: the microscopic perspective of a tight-binding model and an ab-initio calculation on bilayer, and the perspective of symmetry protected topological (SPT) states for general multi-layer. We show that a AB-BA bilayer tilt boundary supports gapless kink states that are undeterred by strain concentrated at the boundary. Further, we establish the kink states as concrete examples of edge states of {\it time-reversal symmetric} Z{\mathbb Z}-type SPT, protected by no valley mixing, electron number conservation, and time reversal TT symmetries. This allows us to discuss possible phase transitions upon symmetry changes from the SPT perspective. Recent experimental observations of a network of such tilt boundaries suggest that transport through these novel topological kink states might explain the long standing puzzle of sub-gap conductance. Further, recent observation of gap closing and re-opening in gated bi-layer might be the first example of a transition between two distinct SPT's: QVH and LAF.Comment: Improved a discussion of the structural aspects of the tilt boundary. Included a discussion of boundary condition dependence. Added new section on connection to experiment

    Entanglement entropy of the ν=1/2\nu=1/2 composite fermion non-Fermi liquid state

    Full text link
    The so-called ``non-Fermi liquid'' behavior is very common in strongly correlated systems. However, its operational definition in terms of ``what it is not'' is a major obstacle against theoretical understanding of this fascinating correlated state. Recently there has been much interest in entanglement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have been limited to models without direct experimental realizations. Here we focus on a two dimensional electron fluid under magnetic field and filling fraction ν=1/2\nu=1/2, which is believed to be a non-Fermi liquid state. Using the composite fermion (CF) wave-function which captures the ν=1/2\nu=1/2 state very accurately, we compute the second R\'enyi entropy using variational Monte-Carlo technique and an efficient parallel algorithm. We find the entanglement entropy scales as LlogLL\log L with the length of the boundary LL as it does for free fermions, albeit with a pre-factor twice that of the free fermion. We contrast the results against theoretical conjectures and discuss the implications of the results.Comment: 4+ page

    Signatures of unconventional pairing in near-vortex electronic structure of LiFeAs

    Full text link
    A major question in Fe-based superconductors remains the structure of the pairing, in particular whether it is of unconventional nature. The electronic structure near vortices can serve as a platform for phase-sensitive measurements to answer this question. By solving Bogoliubov-de Gennes equations for LiFeAs, we calculate the energy-dependent local electronic structure near a vortex for different nodeless gap-structure possibilities. At low energies, the local density of states (LDOS) around a vortex is determined by the normal-state electronic structure. However, at energies closer to the gap value, the LDOS can distinguish an anisotropic from a conventional isotropic s-wave gap. We show within our self-consistent calculation that in addition, the local gap profile differs between a conventional and an unconventional pairing. We explain this through admixing of a secondary order parameter within Ginzburg-Landau theory. In-field scanning tunneling spectroscopy near vortices can therefore be used as a real-space probe of the gap structure

    Spin-Orbit Coupling in LaAlO3_3/SrTiO3_3 interfaces: Magnetism and Orbital Ordering

    Full text link
    The combination of Rashba spin-orbit coupling and electron correlations can induce unusual phenomena in the metallic interface between SrTiO3_3 and LaAlO3_3. We consider effects of Rashba spin-orbit coupling at this interface in the context of the recent observation of anisotropic magnetism. Firstly, we show how Rashba spin-orbit coupling in a system near a band-edge can account for the observed magnetic anisotropy. Secondly, we investigate the coupling between in-plane magnetic-moment anisotropy and nematicity in the form of an orbital imbalance between dxz_{xz} / dyz_{yz} orbitals. We estimate this coupling to be substantial in the low electron density regime. Such an orbital ordering can affect magneto transport

    Commensurate 4a04a_0 period Charge Density Modulations throughout the Bi2Sr2CaCu2O8+xBi_2Sr_2CaCu_2O_{8+x} Pseudogap Regime

    Full text link
    Theories based upon strong real space (r-space) electron electron interactions have long predicted that unidirectional charge density modulations (CDM) with four unit cell (4a0a_0) periodicity should occur in the hole doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QAQ_A of the CDM to evolve continuously as if driven primarily by momentum space (k-space) effects. Here we introduce phase resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this new technique reveals a virtually doping independent locking of the local CDM wavevector at Q0=2π/4a0|Q_0|=2\pi/4a_0 throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi surface) based picture of the cuprate CDM but are consistent with strong coupling r-space based theories. Our findings imply that it is the latter that provide the intrinsic organizational principle for the cuprate CDM state

    Topological Defects Coupling Smectic Modulations to Intra-unit-cell Nematicity in Cuprate

    Full text link
    We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi2Sr2CaCu2O8+{\delta}. By visualizing their spatial components separately, we identified 2\pi topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors
    corecore