2 research outputs found
Acceleration radiation, transition probabilities, and trans-Planckian physics
An important question in the derivation of the acceleration radiation, which
also arises in Hawking's derivation of black hole radiance, is the need to
invoke trans-Planckian physics for the quantum field that originates the
created quanta. We point out that this issue can be further clarified by
reconsidering the analysis in terms of particle detectors, transition
probabilities, and local two-point functions. By writing down separate
expressions for the spontaneous- and induced-transition probabilities of a
uniformly accelerated detector, we show that the bulk of the effect comes from
the natural (non trans-Planckian) scale of the problem, which largely
diminishes the importance of the trans-Planckian sector. This is so, at least,
when trans-Planckian physics is defined in a Lorentz invariant way. This
analysis also suggests how to define and estimate the role of trans-Planckian
physics in the Hawking effect itself.Comment: 19 page
Infrared effects in inflationary correlation functions
In this article, I briefly review the status of infrared effects which occur
when using inflationary models to calculate initial conditions for a subsequent
hot, dense plasma phase. Three types of divergence have been identified in the
literature: secular, "time-dependent" logarithms, which grow with time spent
outside the horizon; "box-cutoff" logarithms, which encode a dependence on the
infrared cutoff when calculating in a finite-sized box; and "quantum"
logarithms, which depend on the ratio of a scale characterizing new physics to
the scale of whatever process is under consideration, and whose interpretation
is the same as conventional field theory. I review the calculations in which
these divergences appear, and discuss the methods which have been developed to
deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on
nonlinear and nongaussian perturbation theory. Some improvements compared to
version which will appear in CQG, especially in Sec. 2.3. 30 pages +
references