709 research outputs found
AME - Asteroseismology Made Easy. Estimating stellar properties by use of scaled models
We present a new method to obtain stellar properties for stars exhibiting
solar-like oscillations in an easy, fast, and transparent way. The method,
called Asteroseismology Made Easy (AME), can determine stellar masses,
mean-densities, radii, and surface gravities, as well as estimate ages. In this
writing we present AME as a visual and powerful tool which could be useful; in
particular in the light of the large number of exoplanets being found.
AME consists of a set of figures from which the stellar parameters are
deduced. These figures are made from a grid of stellar evolutionary models that
cover masses ranging from 0.7 Msun to 1.6 Msun in steps of 0.1 Msun and
metallicities in the interval -0.3 dex <= [Fe/H] <= +0.3 dex in increments of
0.1 dex. The stellar evolutionary models are computed using the Modules for
Experiments in Stellar Astrophysics (MESA) code with simple input physics.
We have compared the results from AME with results for three groups of stars;
stars with radii determined from interferometry (and measured parallaxes),
stars with radii determined from measurements of their parallaxes (and
calculated angular diameters), and stars with results based on the modelling of
their individual oscillation frequencies. We find that a comparison of the
radii from interferometry to those from AME yield a weighted mean of the
fractional differences of just 2%. This is also the level of deviation that we
find when we compare the parallax-based radii to the radii determined from AME.
The comparison between independently determined stellar parameters and those
found using AME show that our method can provide reliable stellar masses,
radii, and ages, with median uncertainties in the order of 4%, 2%, and 25%
respectively.Comment: 18 pages, 25 figures. To be published in Astronomy & Astrophysic
On the asymptotic acoustic-mode phase in red-giant stars and its dependence on evolutionary state
Asteroseismic investigations based on the wealth of data now available,in
particular from the CoRoT and Kepler missions, require a good understanding of
the relation between the observed quantities and the properties of the
underlying stellar structure. Kallinger et al. 2012 found a relation between
their determination of the asymptotic phase of radial oscillations in evolved
stars and the evolutionary state, separating ascending-branch red giants from
helium-burning stars in the `red clump'. Here we provide a detailed analysis of
this relation, which is found to derive from differences between these two
classes of stars in the thermodynamic state of the convective envelope. There
is potential for distinguishing red giants and clump stars based on the phase
determined from observations that are too short to allow distinction based on
determination of the period spacing for mixed modes. The analysis of the phase
may also point to a better understanding of the potential for using the
helium-ionization-induced acoustic glitch to determine the helium abundance in
the envelopes of these stars.Comment: MNRAS, in the pres
Tests of the asymptotic large frequency separation of acoustic oscillations in solar-type and red giant stars
Asteroseismology, i.e. the study of the internal structures of stars via
their global oscillations, is a valuable tool to obtain stellar parameters such
as mass, radius, surface gravity and mean density. These parameters can be
obtained using certain scaling relations which are based on an asymptotic
approximation. Usually the observed oscillation parameters are assumed to
follow these scaling relations. Recently, it has been questioned whether this
is a valid approach, i.e., whether the order of the observed oscillation modes
are high enough to be approximated with an asymptotic theory. In this work we
use stellar models to investigate whether the differences between observable
oscillation parameters and their asymptotic estimates are indeed significant.
We compute the asymptotic values directly from the stellar models and derive
the observable values from adiabatic pulsation calculations of the same models.
We find that the extent to which the atmosphere is included in the models is a
key parameter. Considering a larger extension of the atmosphere beyond the
photosphere reduces the difference between the asymptotic and observable values
of the large frequency separation. Therefore, we conclude that the currently
suggested discrepancies in the scaling relations might have been overestimated.
Hence, based on the results presented here we believe that the suggestions of
Mosser et al. (2013) should not be followed without careful consideration.Comment: 6 pages, 4 figures, 1 table, accepted for publication by MNRAS as a
Letter to the Edito
Testing Asteroseismic Radii of Dwarfs and Subgiants with Kepler and Gaia
We test asteroseismic radii of Kepler main-sequence and subgiant stars by
deriving their parallaxes which are compared with those of the first Gaia data
release. We compute radii based on the asteroseismic scaling relations as well
as by fitting observed oscillation frequencies to stellar models for a subset
of the sample, and test the impact of using effective temperatures from either
spectroscopy or the infrared flux method. An offset of 3%, showing no
dependency on any stellar parameters, is found between seismic parallaxes
derived from frequency modelling and those from Gaia. For parallaxes based on
radii from the scaling relations, a smaller offset is found on average;
however, the offset becomes temperature dependent which we interpret as
problems with the scaling relations at high stellar temperatures. Using the
hotter infrared flux method temperature scale, there is no indication that
radii from the scaling relations are inaccurate by more than about 5%. Taking
the radii and masses from the modelling of individual frequencies as reference
values, we seek to correct the scaling relations for the observed temperature
trend. This analysis indicates that the scaling relations systematically
overestimate radii and masses at high temperatures, and that they are accurate
to within 5% in radius and 13% in mass for main-sequence stars with
temperatures below 6400 K. However, further analysis is required to test the
validity of the corrections on a star-by-star basis and for more evolved stars.Comment: 12 pages, 9 figures. Accepted for publication in MNRA
Pulsation Period Changes as a Tool to Identify Pre-Zero Age Horizontal Branch Stars
One of the most dramatic events in the life of a low-mass star is the He
flash, which takes place at the tip of the red giant branch (RGB) and is
followed by a series of secondary flashes before the star settles into the
zero-age horizontal branch (ZAHB). Yet, no stars have been positively
identified in this key evolutionary phase, mainly for two reasons: first, this
pre-ZAHB phase is very short compared to other major evolutionary phases in the
life of a star; and second, these pre-ZAHB stars are expected to overlap the
loci occupied by asymptotic giant branch (AGB), HB and RGB stars observed in
the color-magnitude diagram (CMD). We investigate the possibility of detecting
these stars through stellar pulsations, since some of them are expected to
rapidly cross the Cepheid/RR Lyrae instability strip in their route from the
RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a
consequence of their very high evolutionary speed, some of these stars may
present anomalously large period change rates. We constructed an extensive grid
of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for
the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR
Lyrae stars with high period change rates are found. Our results suggest that
some -- but certainly not all -- of the RR Lyrae stars in M3 with large period
change rates are in fact pre-ZAHB pulsators.Comment: Conference Proceedings HELAS Workshop on 'Synergies between solar and
stellar modelling', Rome, June 2009, Astrophys. Space Sci., in the pres
High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age
HARPS-N spectra with S/N > 250 and MARCS model atmospheres were used to
derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten
stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B)
selected to have metallicities in the range -0.15 < [Fe/H] < +0.15 and ages
between 1 and 7 Gyr. Stellar gravities were obtained from seismic data and
effective temperatures were determined by comparing non-LTE iron abundances
derived from FeI and FeII lines. Available non-LTE corrections were also
applied when deriving abundances of the other elements. The results support the
[X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and
[Zn/Fe] decrease by ~0.1 dex over the lifetime of the Galactic thin disk due to
delayed contribution of iron from Type Ia supernovae relative to prompt
production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the
other hand, increase by ~0.3 dex, which can be explained by an increasing
contribution of s-process elements from low-mass AGB stars as time goes on. The
trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio
between refractory and volatile elements among stars of similar age. Two stars
with about the same age as the Sun show very different trends of [X/H] as a
function of elemental condensation temperature Tc and for 16 Cyg, the two
components have an abundance difference, which increases with Tc. These
anomalies may be connected to planet-star interactions.Comment: 13 pages with 7 figures. Accepted for publication in A&
The G-dwarf distribution in star-forming galaxies: a tug-of-war between infall and outflow
In the past, the cumulative metallicity distribution function (CMDF) turned
out as a useful tool to constrain the accretion history of various components
of the Milky Way. In this Letter, by means of analytical, leaky-box chemical
evolution models (i.e. including both infall and galactic outflows) we study
the CMDF of local star-forming galaxies that follow two fundamental empirical
scaling relations, namely the mass-metallicity and main sequence relations. At
variance with any previous, historical knowledge of this quantity, our analysis
shows that galactic winds, which are dominant mostly in low-mass systems, play
a fundamental role in shaping this function and, in particular, in determining
its steepness and curvature. We show that the CMDF of low-mass
(M/M) and high-mass
(M/M>10) galaxies deviate substantially from the
results of a 'closed-box' model, as the evolution of the former (latter)
systems is mostly dominated by outflows (infall). In the context of galactic
downsizing, we show that downward-concave CMDFs (associated with systems with
extremely small infall timescales and with very strong winds) are more frequent
in low-mass galaxies, which include larger fractions of young systems and
present more substantial deviations from equilibrium between gas accretion and
reprocessing (either via star formation or winds).Comment: 6 pages, 4 figure
Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting
Our poor understanding of the boundaries of convective cores generates large
uncertainties on the extent of these cores and thus on stellar ages. Our aim is
to use asteroseismology to consistently measure the extent of convective cores
in a sample of main-sequence stars whose masses lie around the mass-limit for
having a convective core. We first test and validate a seismic diagnostic that
was proposed to probe in a model-dependent way the extent of convective cores
using the so-called ratios, which are built with and
modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets
to optimize the efficiency of this diagnostic. For this purpose, we compute
grids of stellar models with both the CESAM2k and MESA evolution codes, where
the extensions of convective cores are modeled either by an instantaneous
mixing or as a diffusion process. Among the selected targets, we are able to
unambiguously detect convective cores in eight stars and we obtain seismic
measurements of the extent of the mixed core in these targets with a good
agreement between the CESAM2k and MESA codes. By performing optimizations using
the Levenberg-Marquardt algorithm, we then obtain estimates of the amount of
extra-mixing beyond the core that is required in CESAM2k to reproduce seismic
observations for these eight stars and we show that this can be used to propose
a calibration of this quantity. This calibration depends on the prescription
chosen for the extra-mixing, but we find that it should be valid also for the
code MESA, provided the same prescription is used. This study constitutes a
first step towards the calibration of the extension of convective cores in
low-mass stars, which will help reduce the uncertainties on the ages of these
stars.Comment: 27 pages, 15 figures, accepted in A&
- …