8,476 research outputs found

    Hurdles for Recent Measures in Eternal Inflation

    Get PDF
    In recent literature on eternal inflation, a number of measures have been introduced which attempt to assign probabilities to different pocket universes by counting the number of each type of pocket according to a specific procedure. We give an overview of the existing measures, pointing out some interesting connections and generic predictions. For example, pairs of vacua that undergo fast transitions between themselves will be strongly favored. The resultant implications for making predictions in a generic potential landscape are discussed. We also raise a number of issues concerning the types of transitions that observers in eternal inflation are able to experience.Comment: 15 PRD-style pages, 5 figures, expanded discussion of measures in Sec. II, added reference

    Towards observable signatures of other bubble universes II: Exact solutions for thin-wall bubble collisions

    Get PDF
    We assess the effects of a collision between two vacuum bubbles in the thin-wall limit. After describing the outcome of a generic collision possessing the expected hyperbolic symmetry, we focus on collisions experienced by a bubble containing positive vacuum energy, which could in principle contain our observable universe. We provide criteria governing whether the post-collision domain wall accelerates towards or away from this "observation" bubble, and discuss the implications for observers located at various positions inside of the bubble. Then, we identify the class of solutions which have minimal impact on the interior of the observation bubble, and derive a simple formula for the energy density of a shell of radiation emitted from such a collision. In the context of a universe undergoing false vacuum eternal inflation, these solutions are perhaps the most promising candidates for collisions that could exist within our past light cone, and therefore in principle be observable.Comment: 18 PRD-style pages, 12 figures. Added appendix on the expected number of collisions, added references, minor correction to Appendix C, conclusions unchanged. Replaced to match published versio

    Electrovac Universes with a Cosmological Constant

    Full text link
    We present the extension of the Einstein-Maxwell system called electrovac universes by introducing a cosmological constant Λ\Lambda. In the absence of the Λ\Lambda term, the crucial equation in solving the Einstein-Maxwell system is the Laplace equation. The cosmological constant modifies this equation to become in a non-linear partial differential equation which takes the form ΔU=2ΛU3\Delta U=2\Lambda U^3. We offer special solutions of this equation.Comment: 7 page

    Schemata as Building Blocks: Does Size Matter?

    Full text link
    We analyze the schema theorem and the building block hypothesis using a recently derived, exact schemata evolution equation. We derive a new schema theorem based on the concept of effective fitness showing that schemata of higher than average effective fitness receive an exponentially increasing number of trials over time. The building block hypothesis is a natural consequence in that the equation shows how fit schemata are constructed from fit sub-schemata. However, we show that generically there is no preference for short, low-order schemata. In the case where schema reconstruction is favoured over schema destruction large schemata tend to be favoured. As a corollary of the evolution equation we prove Geiringer's theorem. We give supporting numerical evidence for our claims in both non-epsitatic and epistatic landscapes.Comment: 17 pages, 10 postscript figure

    Towards observable signatures of other bubble universes

    Full text link
    We evaluate the possibility of observable effects arising from collisions between vacuum bubbles in a universe undergoing false-vacuum eternal inflation. Contrary to conventional wisdom, we find that under certain assumptions most positions inside a bubble should have access to a large number of collision events. We calculate the expected number and angular size distribution of such collisions on an observer's "sky," finding that for typical observers the distribution is anisotropic and includes many bubbles, each of which will affect the majority of the observer's sky. After a qualitative discussion of the physics involved in collisions between arbitrary bubbles, we evaluate the implications of our results, and outline possible detectable effects. In an optimistic sense, then, the present paper constitutes a first step in an assessment of the possible effects of other bubble universes on the cosmic microwave background and other observables.Comment: 17 PRD-style pages including 13 embedded figures. Minor corrections to figures 4 and 7 and added discussion in Sec. III.E.2 and

    Two Tunnels to Inflation

    Full text link
    We investigate the formation via tunneling of inflating (false-vacuum) bubbles in a true-vacuum background, and the reverse process. Using effective potentials from the junction condition formalism, all true- and false-vacuum bubble solutions with positive interior and exterior cosmological constant, and arbitrary mass are catalogued. We find that tunneling through the same effective potential appears to describe two distinct processes: one in which the initial and final states are separated by a wormhole (the Farhi-Guth-Guven mechanism), and one in which they are either in the same hubble volume or separated by a cosmological horizon. In the zero-mass limit, the first process corresponds to the creation of an inhomogenous universe from nothing, while the second mechanism is equivalent to the nucleation of true- or false-vacuum Coleman-De Luccia bubbles. We compute the probabilities of both mechanisms in the WKB approximation using semi-classical Hamiltonian methods, and find that -- assuming both process are allowed -- neither mechanism dominates in all regimes.Comment: 16 PRD-style pages, 13 figures. PRD, in press. Revised to match published versio

    Dynamics and instability of false vacuum bubbles

    Full text link
    This paper examines the classical dynamics of false vacuum regions embedded in surrounding regions of true vacuum, in the thin-wall limit. The dynamics of all generally relativistically allowed solutions -- most but not all of which have been previously studied -- are derived, enumerated, and interpreted. We comment on the relation of these solutions to possible mechanisms whereby inflating regions may be spawned from non-inflating ones. We then calculate the dynamics of first order deviations from spherical symmetry, finding that many solutions are unstable to such aspherical perturbations. The parameter space in which the perturbations on bound solutions inevitably become nonlinear is mapped. This instability has consequences for the Farhi-Guth-Guven mechanism for baby universe production via quantum tunneling.Comment: 16 PRD-style pages including 11 embedded figures; accepted by PRD. Revised version includes new solution, discussion of 'thermal activation', added reference, fixed typo
    • …
    corecore