3 research outputs found

    Mechanical loading of tissue engineered skeletal muscle prevents dexamethasone induced myotube atrophy

    Get PDF
    Skeletal muscle atrophy as a consequence of acute and chronic illness, immobilisation, muscular dystrophies and aging, leads to severe muscle weakness, inactivity and increased mortality. Mechanical loading is thought to be the primary driver for skeletal muscle hypertrophy, however the extent to which mechanical loading can offset muscle catabolism has not been thoroughly explored. In vitro 3D-models of skeletal muscle provide a controllable, high throughput environment and mitigating many of the ethical and methodological constraints present during in vivo experimentation. This work aimed to determine if mechanical loading would offset dexamethasone (DEX) induced skeletal muscle atrophy, in muscle engineered using the C2C12 murine cell line. Mechanical loading successfully offset myotube atrophy and functional degeneration associated with DEX regardless of whether the loading occurred before or after 24 h of DEX treatment. Furthermore, mechanical load prevented increases in MuRF-1 and MAFbx mRNA expression, critical regulators of muscle atrophy. Overall, we demonstrate the application of tissue engineered muscle to study skeletal muscle health and disease, offering great potential for future use to better understand treatment modalities for skeletal muscle atrophy

    Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses

    Get PDF
    Mechanical loading of skeletal muscle results in molecular and phenotypic adaptations typified by enhanced muscle size. Studies on humans are limited by the need for repeated sampling, and studies on animals have methodological and ethical limitations. In this investigation, three-dimensional skeletal muscle was tissue-engineered utilizing the murine cell line C2C12, which bears resemblance to native tissue and benefits from the advantages of conventional in vitro experiments. The work aimed to determine if mechanical loading induced an anabolic hypertrophic response, akin to that described in vivo after mechanical loading in the form of resistance exercise. Specifically, we temporally investigated candidate gene expression and Akt-mechanistic target of rapamycin 1 signalling along with myotube growth and tissue function. Mechanical loading (construct length increase of 15%) significantly increased insulin-like growth factor-1 and MMP-2 messenger RNA expression 21 hr after overload, and the levels of the atrophic gene MAFbx were significantly downregulated 45 hr after mechanical overload. In addition, p70S6 kinase and 4EBP-1 phosphorylation were upregulated immediately after mechanical overload. Maximal contractile force was augmented 45 hr after load with a 265% increase in force, alongside significant hypertrophy of the myotubes within the engineered muscle. Overall, mechanical loading of tissue-engineered skeletal muscle induced hypertrophy and improved force production
    corecore