738 research outputs found

    Microbial Diversity and Toxin Risk in Tropical Freshwater Reservoirs of Cape Verde

    Get PDF
    This deposit is composed by the main article plus the supplementary materials of the publication.The Cape Verde islands are part of the African Sahelian arid belt that possesses an erratic rain pattern prompting the need for water reservoirs, which are now critical for the country’s sustainability. Worldwide, freshwater cyanobacterial blooms are increasing in frequency due to global climate change and the eutrophication of water bodies, particularly in reservoirs. To date, there have been no risk assessments of cyanobacterial toxin production in these man-made structures. We evaluated this potential risk using 16S rRNA gene amplicon sequencing and full metagenome sequencing in freshwater reservoirs of Cape Verde. Our analysis revealed the presence of several potentially toxic cyanobacterial genera in all sampled reservoirs. Faveta potentially toxic and bloom-forming Microcystis sp., dominated our samples, while a Cryptomonas green algae and Gammaproteobacteria dominated Saquinho and Poilão reservoirs. We reconstructed and assembled the Microcystis genome, extracted from the metagenome of bulk DNA from Faveta water. Phylogenetic analysis of Microcystis cf. aeruginosa CV01’s genome revealed its close relationship with other Microcystis genomes, as well as clustering with other continental African strains, suggesting geographical coherency. In addition, it revealed several clusters of known toxin-producing genes. This survey reinforces the need to better understand the country’s microbial ecology as a whole of water reservoirs on the rise.Portuguese Science and Technology Foundation grants: (PTDC/MAR-BIO/4132/2014, SFRH/BD/113752/2015, SFRH/BPD/91518/2012).info:eu-repo/semantics/publishedVersio

    The emerging role of ionic liquid-based approaches for enhanced skin permeation of bioactive molecules: a snapshot of the past couple of years

    Get PDF
    Topical and transdermal delivery systems are of undeniable significance and ubiquity in healthcare, to facilitate the delivery of active pharmaceutical ingredients, respectively, onto or across the skin to enter systemic circulation. From ancient ointments and potions to modern micro/nanotechnological devices, a variety of approaches has been explored over the ages to improve the skin permeation of diverse medicines and cosmetics. Amongst the latest investigational dermal permeation enhancers, ionic liquids have been gaining momentum, and recent years have been prolific in this regard. As such, this review offers an outline of current methods for enhancing percutaneous permeation, highlighting selected reports where ionic liquid-based approaches have been investigated for this purpose. Future perspectives on use of ionic liquids for topical delivery of bioactive peptides are also presented.info:eu-repo/semantics/publishedVersio

    Solid dosage forms of biopharmaceuticals in drug delivery systems using sustainable strategies

    Get PDF
    Funding Information: C. Costa, T. Casimiro and A. Aguiar-Ricardo are grateful for the financial support of the Associate Laboratory for Green Chemistry-LAQV, Faculdade de Ci?ncias e Tecnologia, Universidade Nova de Lisboa, Portugal, which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). C. Costa thanks FCT (Funda??o para a Ci?ncia e Tecnologia) and ESF (European Social Fund) through POCH (Programa Operacional Capital Humano) for her PhD grant ref. PD/BD/142880/2018 and Project PD/00184/2012-PDQS. M.L. Corvo is grateful for the financial support of the Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal, which is supported in part by UID/DTP/04138/2020 and UIDP/04138/2020 from FCT/MCTES, Portugal. Funding Information: Funding: C. Costa, T. Casimiro and A. Aguiar-Ricardo are grateful for the financial support of the Associate Laboratory for Green Chemistry-LAQV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal, which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). C. Costa thanks FCT (Fundação para a Ciência e Tecnologia) and ESF (European Social Fund) through POCH (Programa Operacional Capital Humano) for her PhD grant ref. PD/BD/142880/2018 and Project PD/00184/2012-PDQS. M.L. Corvo is grateful for the financial support of the Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal, which is supported in part by UID/DTP/04138/2020 and UIDP/04138/2020 from FCT/MCTES, Portugal. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Drug delivery systems (DDS) often comprise biopharmaceuticals in aqueous form, making them susceptible to physical and chemical degradation, and therefore requiring low temperature storage in cold supply and distribution chains. Freeze-drying, spray-drying, and spray-freeze-drying are some of the techniques used to convert biopharmaceuticals-loaded DDS from aqueous to solid dosage forms. However, the risk exists that shear and heat stress during processing may provoke DDS damage and efficacy loss. Supercritical fluids (SCF), specifically, supercritical carbon dioxide (scCO2), is a sustainable alternative to common techniques. Due to its moderately critical and tunable properties and thermodynamic behavior, scCO2 has aroused scientific and industrial interest. Therefore, this article reviews scCO2-based techniques used over the year in the production of solid biopharmaceutical dosage forms. Looking particularly at the use of scCO2 in each of its potential roles—as a solvent, co-solvent, anti-solvent, or co-solute. It ends with a comparison between the compound’s stability using supercritical CO2-assisted atomization/spray-drying and conventional drying.publishersversionpublishe

    A proof-of-concept

    Get PDF
    Funding Information: C. Costa, T. Casimiro and A. Aguiar-Ricardo are grateful for the financial support of the Associate Laboratory for Green Chemistry-LAQV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Portugal, which is financed by national funds from FCT/MCTES ( UIDB/50006/2020 and UIDP/50006/2020 ). C. Costa thanks FCT (Fundação para a Ciência e Tecnologia) and ESF (European Social Fund) through POCH (Programa Operacional Capital Humano) for her PhD grant ref. PD/BD/142880/2018, COVID/BD/152744/2022 and Project PD/00184/2012-PDQS . C. Costa and A. Aguiar-Ricardo acknowledge also CA18224 GREENERING (“Green Chemical Engineering Network towards upscaling sustainable processes”). COST Actions are funded within the EU Horizon 2020 Programme . M.L. Corvo is grateful for the financial support of the Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Lisbon, Portugal, which is supported in part by UID/DTP/04138/2020 and UIDP/04138/2020 from FCT/MCTES , Portugal. The authors are grateful to Prof. M. Dionísio for the DSC facility. Publisher Copyright: © 2023Enzyme-based inhalable therapeutics for lung inflammation are gaining interest as an alternative to long-term corticosteroids treatments. However, enzymes have poor pharmacokinetics. Encapsulating enzymes in liposomes can increase their half-live and modify their biodistribution. But both liposomes and enzymes are susceptible to destabilization during storage. This drawback can be surpassed, by converting liposomal suspension into solid dosage forms for different administration routes, including inhalation. In this study, Cu, Zn- superoxide dismutase (SOD) was encapsulated in liposomes, then dried using supercritical CO2-assisted spray-drying to make SOD-loaded liposomal dry powder formulations (SOD_Lip-DPFs). Upon resuspension in water, liposomes maintained structural integrity, with 99% SOD encapsulation efficiency and preserved enzymatic activity. Stability studies showed that SOD_Lip-DPFs maintained liposomal and enzyme stability for 50 days at 40% relative humidity. This offers a stable and efficient delivery system for enzyme-based inhalable therapeutics.publishersversionpublishe

    Dry Dosage Forms of Add-Value Bioactive Phenolic Compounds by Supercritical CO2-Assisted Spray-Drying

    Get PDF
    PTDC/BII-BIO/30884/2017—POCI-01-0145-FEDER-030884 PD/00184/2012-PDQSEvery year, grapevine pruning produces huge amounts of residue, 90% of which are from vine shoots. These are a rich source of natural antioxidants, mostly phenolic compounds, which, when properly extracted, can give rise to added-value products. However, their lack of solubility in aqueous media and high susceptibility to thermal and oxidative degradation highly limit their bioavailability. Encapsulation in suitable carriers may have a positive impact on their bioavailability and bioactivity. Previous data on vine-shoot extraction have identified gallic acid (GA) and resveratrol (RSV) as the main phenolic compounds. In this work, model dry powder formulations (DPFs) of GA and RSV using hydroxypropyl cellulose (HPC) as carriers were developed using Supercritical CO2-Assisted Spray Drying (SASD). A 32 full factorial Design of Experiments investigated the solid and ethanol contents to ascertain process yield, particle size, span, and encapsulation efficiency. Amorphous powder yields above 60%, and encapsulation efficiencies up to 100% were achieved, representing excellent performances. SASD has proven to be an efficient encapsulation technique for these phenolic compounds, preserving their antioxidation potential after three months in storage with average EC50 values of 30.6 µg/mL for GA–DPFs and 149.4 µg/mL for RSV–DPF as assessed by the scavenging capacity of the DPPH radical.publishersversionpublishe

    Bioinspired and Sustainable Chitosan Based Monoliths for Antibody Capture and Release

    Get PDF
    The authors would like to thank the financial support from Fundacao para a Ciencia e Tecnologia, Portugal, through contracts MIT-Pt/BS-CTRM/0051/2008, PTDC/EBB-BIO/102163/2008, PTDC/EBB-BIO/098961/2008 and PTDC/EBB-BIO/118317/2010 and doctoral grant SFRH/BD/62475/2009 (T. B.), Bioengineering Systems Focus Area, Fundacao Calouste Gulbenkian, FEDER and FSE. We wish to thank the Analytical Services Laboratory of REQUIMTE for the characterization of materials. Authors are also thankful to Lonza Biologics, UK (Dr Richard Alldread) and the Animal Cell Technology Unit of ITQB-UNL/IBET (Dr Paula M Alves and Dr Ana Teixeira) for providing the cell culture bulks of antibodies.Chitosan-based monoliths activated by plasma technology induced the coupling of a robust biomimetic ligand, previously reported as an artificial Protein A, with high yields while minimizing the environmental impact of the procedure. Due to the high porosity, good mechanical and tunable physicochemical properties of the affinity chitosan-based monoliths, it is possible to achieve high binding capacities (150 ± 10 mg antibody per gram support), and to recover 90 ± 5% of the bound protein with 98% purity directly from cell-culture extracts. Therefore, the chitosan-based monoliths prepared by clean processes exhibit a remarkable performance for the one-step capture and recovery of pure antibodies or other biological molecules with biopharmaceutical relevance.authorsversionpublishe

    Nanofibrous membranes obtained by electrospinning for bone tissue engineering and wound dressing applications

    Get PDF
    Esta tesis doctoral se ha realizado dentro del marco de un acuerdo de co-tutela entre la Universidad de Zaragoza (Universidad de origen), la Universidad de Calabria (Universidad anfitriona) y la Facultad de Ciencias y Tecnología de la Universidad NOVA de Lisboa (FCT NOVA) (Universidad anfitriona). El trabajo de investigación se ha llevado a cabo dentro del programa de Doctorado en Ingeniería de Membranas Erasmus Mundus (EUDIME), (FPA 2011-0014), financiado por la Unión Europea. La tesis se centró principalmente en el uso de la técnica de electrohilado para producir diferentes tipos de membranas que puedan ser utilizadas en distintas aplicaciones biomédicas. Se sintetizaron y produjeron nanopartículas orgánicas e inorgánicas para ser utilizadas como rellenos o como portadores (sistema de administración de fármacos), así como membranas nanofibrosas electrohiladas. Este trabajo se llevó a cabo en el Instituto de Nanociencia de Aragón (INA), específicamente en el grupo de Nanostructured Films and Particles (NFP) bajo la supervisión de la profesora Silvia Irusta y la Dra. Gracia Mendoza. Una parte importante de la caracterización físico-química se realizó en el INA. En la Universidad de Calabria se trabajó bajo la supervisión de la Dra. Loredana de Bartolo en el Instituto de Tecnología de Membranas (ITM). Allí se utilizaron técnicas específicas tanto para la caracterización como para estudiar diferentes señales biológicas producidas por las membranas sintetizadas, bajo la supervisión. Por otro lado, la movilidad llevada a cabo en la Facultad de Ciencias y Tecnología (FCT NOVA) de la Universidade NOVA (FCT NOVA) bajo la supervisión de la profesora Ana Isabel Aguiar-Ricardo, permitió realizar una caracterización completa de dos membranas asimétricas siguiendo diferentes Normas Internacionales que establecen diferentes ensayos a realizar en apósitos primarios utilizados en heridas. El desarrollo de nuevos scaffolds cargados con proteínas morfogenéticas o antibióticos es de gran interés en el campo de la ingeniería de tejidos óseos. Scaffolds electrohilados con una microporosidad mejorada puede ser beneficioso para mejorar la viabilidad celular debido a que una alta porosidad junto a la presencia de microporos puede proporcionar un entorno tridimensional (3D) que no solamente facilita la siembra y difusión celular sino también proporciona una mejor difusión de los nutrientes y residuos a través del scaffolds. La adición de cerámica de fosfato de calcio ha sido ampliamente investigada para fabricar scaffolds altamente porosos para la ingeniería de tejidos óseos debido a que presentan una composición muy similar al hueso, incluyendo excelentes propiedades de biocompatibilidad, osteoinductivas y osteoconductoras. Partículas cargadas con proteínas morfogenéticas de hueso distribuidas homogéneamente en el scaffolds podrían asegurar una liberación continua del factor de crecimiento proporcionando de esta forma las señales bioquímicas necesarias para la reparación y regeneración ósea. Los scaffolds cargados con antibióticos pueden proporcionar una liberación sostenida del fármaco en el sitio de interés, así como el mantenimiento de propiedades osteogénicas mejoradas para la regeneración exitosa del hueso. Evitando de esta forma que se alcancen niveles de toxicidad o niveles ineficaces en la zona de interés, así como la aparición de efectos secundarios indeseados en los pacientes que provocan un rechazo a los tratamientos prolongados de fármacos por vía sistemática (vía oral e intravenosa). Otra aplicación biomédica interesante de las membranas electrohiladas es la fabricación de apósitos inteligentes eficientes para el tratamiento de heridas. Para lograr una curación rápida de la herida es necesario desarrollar membranas apropiadas con poros interconectados capaces de prevenir la deshidratación rápida y la penetración de bacterias. Para mantener un ambiente húmedo en el lecho de la herida se necesita una alta capacidad de absorción y una adecuada transmisión de vapor de agua. Además, si la membrana electrohilada presenta propiedades bactericidas facilitará el proceso de curación. El objetivo principal de esta tesis fue el desarrollo mediante electrohilado de membranas fibrosas con las características apropiadas para ser utilizadas en la ingeniería de tejidos óseos o como apósito para heridas. En los Capítulos II al V se plantean una serie de objetivos específicos con el fin de cumplir el objetivo principal. Este documento de tesis se dividió en las siguientes secciones: CAPÍTULO I, corresponde a la introducción general donde se describen los conceptos de biomateriales, scaffolds, ingeniería de tejidos y el objetivo principal de los sistemas de liberación de fármacos. Así como, la clasificación de los biomateriales y la ingeniería de tejidos según el origen de los materiales. Además se ponen de manifiesto todos los factores que deben tenerse en cuenta para desarrollar y aplicar adecuadamente los apósitos para heridas. Se mencionaron las diferentes técnicas utilizadas en la literatura haciendo énfasis en el uso de electrohilado y electropulverización para producir scaffolds o membranas para su uso en la ingeniería del tejido óseo y como apósitos para heridas. CAPÍTULO II, se enfoca en el desarrollo y mejora de andamios 3D capaces de promover una eficiente regeneración ósea junto con la liberación de antibióticos dirigidos para prevenir la colonización de bacterias. El objetivo de este trabajo fue sintetizar y caracterizar un sistema de liberación de fármacos que consiste en nanofibras electrohiladas de policaprolactona (PCL) decoradas con partículas de poli (ácido láctico-coglicólico) (PLGA) cargadas con rifampicina (RFP). Este material debe promover la reparación ósea evitando el deterioro del scaffolds provocado por una infección. Se realizó la evaluación in vitro de la capacidad bactericida del material electrohilado sintetizado contra bacterias Gram positivas (Staphylococcus aureus) y Gram negativas (Escherichia coli), así como su citocompatibilidad en cultivos 3D con osteoblastos humanos. Estos resultados se enviaron a la Revista de farmacia “International Journal of Pharmaceuitics” para su publicación en formato de artículo y está bajo revisión. CAPÍTULO III, se describe la síntesis y caracterización de membranas con estructura de núcleo-envoltura de PCL y acetato de polivinilo (PVAc) obtenidas por electrohilado. Las fibras se cargaron con nanopartículas de hidroxiapatita sintética (HAn) para aumentar la bioactividad de los materiales. Los scaffolds desarrollados se trataron con ablación láser para crear características topográficas deseadas a nivel micrométrico con el objetivo de favorecer la adhesión y crecimiento celular. Todas las membranas obtenidas presentaron una estructura de poros tridimensionalmente interconectados y el tratamiento con láser provocó un aumento en la viabilidad y densidad celular. Además, el aumento en la biocompatibilidad de los scaffolds sugiere que los microporos pequeños favorecen la adhesión y proliferación celular. Estos resultados fueron publicados en el artículo titulado “Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering”. Javier Aragon, Nuria Navascues, Gracia Mendoza, Silvia Irusta. International Journal of Pharmaceutics 525,112–122, 2017. DOI:10.1016/j.ijpharm.2017.04.022. CAPÍTULO IV, se refiere al desarrollo de un scaffold electrohilado compuesto por fibras con estructura de núcleo-cubierta de PCL o PCL/PVAc cargado con HAn sintética. Estas fibras se decoraron con partículas de PLGA cargadas con proteína morfogenética ósea 2 (BMP2) mediante el uso simultaneo de electrohilado coaxial y electropulverización. El objetivo de este trabajo fue evaluar las propiedades estructurales y físico-químicas así como el proceso de biodegradación de los nuevos scaffolds desarrollados y su capacidad para abordar las características arquitectónicas, bioquímicas y funcionales del tejido óseo. Para esto, se probó la bioactividad del scaffold mediante el cultivo de osteoblastos humanos sobre ellos y se monitoreo de la viabilidad celular durante 4 semanas. Se evaluó la actividad osteogénica in vitro de las células sembradas sobre los scaffolds determinando la actividad de la fosfatasa alcalina (ALP) y la expresión de osteocalcina (OCN) y osteopontina (OPN) como proteínas osteogénicas. Estos resultados fueron publicados en el artículo titulado “Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering”. Javier Aragón, Simona Salerno, Loredana De Bartolo, Silvia Irusta and Gracia Mendoza. Journal of Colloid and Interface Science, 531 (2018) 126–137. DOI:10.1016/j.jcis.2018.07.029. El CAPÍTULO V, describe la síntesis de un apósito antimicrobiano para heridas, con una resistencia mecánica adecuada que es capaz de absorber exudados y evitar la deshidratación rápida de una herida. Se prepararon membranas asimétricas de PCL/PVAc cargadas con carvacrol (CRV) mediante el uso simultáneo de electrohilado y electropulverización. Las membranas constan de dos capas; la primera es una capa de PCL electrohilado; la segunda, una lámina de PVAc que estaría en contacto con la piel liberando a su vez el compuesto antimicrobiano. Se demostró que el uso de diferentes disolventes pueden dar lugar a la obtención de diferentes morfologías de la capa PVAc-CRV. Los valores obtenidos de elongación máxima de las membranas antes de romperse son adecuados para ser utilizados como apósitos para heridas ya que están en el mismo rango reportado de elongaciones en la piel humana. Las membranas presentan una tasa óptima de Transmisión de vapor de agua (WVTR) con valores que se encuentran en el rango requerido para mantener un buen balance entre humedad y pérdida de agua en la herida. En la primera semana, se liberó más del 60 % del CRV cargado, mientras que después de tres semanas, las membranas liberaron entre el 85 y el 100 % del CRV cargado mediante la contribución de un proceso de difusión de tipo Fickiano y la relajación delas cadenas poliméricas. Las membranas sintetizadas son candidatas potenciales para ser utilizadas como apósitos para heridas. El manuscrito que resume estos resultados se envió a la revista “Materials Science and Engineering C” y está bajo revisión (MSEC_2018_3013). CAPÍTULO VI, resume las conclusiones generales del trabajo de tesis. APÉNDICE 1, describe las principales técnicas de caracterización y los métodos para evaluar diferentes propiedades en función de las posibles aplicaciones. APÉNDICE 2, resume los artículos publicados y la participación en foros científicos durante el período de tesis. 1The current Doctoral Thesis work has been performed under a co-supervision agreement between University of Zaragoza (Home University), University of Calabria (Host University) and Faculty of Sciences and Technology of the NOVA University of Lisbon (FCT NOVA) (Host University). This research has been carried out inside the Erasmus Mundus Doctorate in Membrane Engineering program (EUDIME), (FPA 2011-0014), funded by the European Union. This thesis focused mainly on the use of the electrospinning technique to produce different kind of membranes for biomedical applications. In particular, it described the synthesis and production of inorganic and organic nanoparticles to be used as fillers or as carriers (drug delivery system) as well as the production of electrospun nanofibrous membranes. This work was carried out within the Institute of Nanoscience of Aragon (INA), specifically in the Nanostructured Films and Particles (NFP) group under the supervision of the Professor Silvia Irusta and Dr Gracia Mendoza. Also an important part of the physico-chemical characterization was done at INA.The study of different biological signals and the use of specific techniques for membrane characterization were acquired at the University of Calabria under the supervision of Dr. Loredana De Bartolo in the Institute on Membrane Technology of the National Research Council of Italy (ITM-CNR). On the other hand, the mobility carried out at the Faculty of Sciences and Technology (FCT NOVA) of Universidade NOVA (FCT NOVA) under the supervision of Professor Ana Isabel Aguiar-Ricardo, allowed a total characterization of two asymmetric membranes following different International Standards to accomplish testing for primary wound dressing.The development of novel membranes loaded with morphogenetic proteins or antibiotic are of great interest in the field of bone tissue engineering. To promote the cellular viability and extracellular matrix production, electrospun membranes with enhanced porosity and micro-scale pores could be beneficial since increased porosity and pore size can provide a three-dimensional (3D) environment that not only facilitates cell seeding/diffusion but also provides better diffusion of nutrients and waste throughout the membranes. The addition of calcium phosphate ceramics has been extensively investigated to fabricate highly porous membranes to bone tissue engineering due to their close similar composition of bone, including excellent biocompatibility, osteoinductive and osteoconductive properties. A homogeneous distribution of the bone morphogenetic protein-loaded particles along the entire membrane could be ensuring a continuous release of the growth factor to provide the necessary biochemical cues for bone repair and regeneration.Antibiotic-loaded membranes may provide drug targeted and sustained release, avoiding the long-term oral and intravenous systematic multidrug administration, which implies toxic side effects, low delivery to the target site and low patient adherence to the treatment. Therefore, membranes loaded with antibiotics can overcome the drawbacks of the traditional therapy sustaining enhanced osteogenic properties for the successful regeneration of the bone. Another interesting biomedical application of electrospun membranes is the fabrication of efficient smart dressings for the treatment of wounds. A rapid wound healing requires developing appropriate membranes with interconnected pores that allow the oxygen diffusion and transport of metabolic waste, as well as an adequate pore size to prevent rapid dehydration and bacteria penetration. A high absorption capacity and adequate water vapor transmission will be necessary to keep a moist environment in the wound bed. Besides, if the electrospun membrane has some bactericidal properties will be better for the healing process.The main goal of this thesis was the development of fibrous membranes by electrospinning with the appropriate characteristics to be used in bone tissue engineering or as wound dressing materials. To achieve this target, several specific objectives were defined, which are described in Chapters II to V.The thesis was divided in the following sections: CHAPTER I, is an introduction where the concepts of biomaterials, scaffolds and tissue engineering and the main target of drug delivery systems are described. The chapter includes the classification of biomaterials according to the origin of the materials and tissue engineering is also described as well as all the factors that must be taken into account to develop and properly apply a wound dressing are discussed. Different kind of techniques used in the literature to produce scaffolds or membranes for bone tissue engineering and wound dressings are mentioned, focusing on the use of electrospinning and electrospray to produce them. CHAPTER II, focuses on the development of enhanced 3D membranes able to promote efficient bone regeneration together with targeted antibiotic release to prevent bacteria colonization. The aim of this work was to synthesize and characterize a drug delivery system consisting of polycaprolactone (PCL) electrospun nanofibers decorated with rifampicin (RFP) loaded into poly(lactic-coglicolic acid) (PLGA) particles. This material would promote bone repair avoiding the impairment of the membrane mediated by infection. The bactericidal ability of the synthesized electrospun material was assessed In vitro against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria, as well as its cytocompatibility in human osteoblasts 3D cultures. These results are included in the accepted article entitled “Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair”. Javier Aragon, Sergio Feoli, Gracia Mendoza, Silvia Irusta. International Journal of Pharmaceutics. CHAPTER III, describes the synthesis and characterization of core-shell membranes of PCL and polyvinyl acetate (PVAc) obtained by electrospinning. The fibers were loaded with synthetic hydroxyapatite nanoparticles (HAn) to increase the bioactivity of the materials. The prepared membranes were then treated by laser ablation to create desired microscale topographical features in order to favor cell adhesion and growth. All prepared membranes exhibited a three-dimensional network structure with interconnected pores; the laser treatment has modified the structural characteristics of the membrane causing an increase the cell viability and cell density. The materials biocompatibility is affected by the structural properties of the membranes, indeed smaller micropore sizes favor cell adhesion and proliferation. These results are published in the article entitled “Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering”. Javier Aragon, Nuria Navascues, Gracia Mendoza, Silvia Irusta. International Journal of Pharmaceutics 525,112–122, 2017. DOI:10.1016/j.ijpharm.2017.04.022. CHAPTER IV, refers to the development of a composite electrospun membrane of PCL or PCL/PVAc core–shell fibers loaded with synthetic HAn. These fibers were decorated with bone morphogenetic protein 2 (BMP2) loaded in/into PLGA particles via simultaneous electrospraying and coaxial electrospinning. The aim of this study was to evaluate the structural and physico-chemical properties and biodegradation processes of the newly developed membranes assessing their ability to address the architectural, biochemical, and functional features of bone tissue. For this purpose, the membrane bioactivity was tested by culturing human osteoblasts on the membranes and by monitoring cell viability up to 4 weeks. The In vitro osteogenic activity of cells seeded onto the membranes was evaluated by assessing alkaline phosphatase (ALP) activity and the expression of osteogenic proteins osteocalcin (OCN) and osteopontin (OPN). These results are published in the article “Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering”. Javier Aragón, Simona Salerno, Loredana De Bartolo, Silvia Irusta and Gracia Mendoza. Journal of Colloid and Interface Science, 531 (2018) 126–137. DOI:10.1016/j.jcis.2018.07.029. CHAPTER V, describes the synthesis of an antimicrobial wound dressing material, with appropriate mechanical resistance avoiding rapid dehydration and absorbing exudates. PCL/PVAc asymmetric membranes loaded with carvacrol (CRV) were prepared by electrospinning and electrospraying simultaneously. The membranes consist of two layers: the first is an electrospun PCL sheet, the second a PVAc sheet that would be in contact with the skin releasing the antimicrobial compound. The use of different solvents results in different morphologies for the PVAc-CRV layer. The membranes exhibit mechanical properties with strain to failure values that are in the range of human skin, being adequate to be deposited over a wound surface. The samples present Water Vapor Transmission (WVTR) values in the required range to keep good moisture balance with water loss from the wound at the optimal rate. In the first week, more than 60 % of the loaded CRV was released while after three weeks membranes released between 85 to 100 % of the loaded CRV through a Fickian diffusion and diffusion due to polymer relaxation. The synthesized membranes are potential candidates to be used for wound dressing applications. The manuscript summing up these results has been submitted to a scientific journal and is currently under review. GENERAL CONCLUSIONS, summarizes the conclusions of the thesis work. APPENDIX 1, describes the main characterization techniques and the methods to evaluate different properties according to the possible applications. APPENDIX 2, summarizes the articles published and the participation in scientific forums during the thesis period.<br /

    Sulfonic Acid-Functionalized (Bio)Materials as Catalysts for Efficient Amide Bond Synthesis

    Get PDF
    Funding Information: The authors thank Fundação para a Ciência e Tecnologia (FC&T) for project PTDC/BII‐BIO/30884/2017 and EXPL/BII‐BIO/0436/2021 and also for the researcher contract 2021.03255.CEECIND (M.C.C) and 2020.01614.CEECIND/CP1596/CT0007 (A.F.P.). Authors also thank the support by the Associate Laboratory for Green Chemistry – LAQV, which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020) and i3 N (LA/P/0037/2020, UIDP/50025/2020 and UIDB/50025/2020 . The National NMR Facility is supported by FC&T (ROTEIRO/0031/2013 – PINFRA/22161/2016, co‐financed by FEDER through COMPETE 2020, POCI, and PORL and FC&T through PIDDAC) and CERMAX through project 022162. We thank Prof. Dr. Carlos A. M. Afonso from the Faculty of Pharmacy, ULisboa for the scientific discussions on the experiments carried out with furfuryl alcohol derivatives. Publisher Copyright: © 2023 The Authors. ChemCatChem published by Wiley-VCH GmbH.Sulfonic acid carbon-(bio)based and natural clays-based catalysts were prepared and investigated for the first time as heterogeneous catalysts for amide bond synthesis by a Ritter reaction. The different SO3H-catalysts were screened using benzyl alcohol and acetonitrile as model substrates, and MWCNT-CSP revealed to be an efficient catalyst, affording the amide in 75 % yield. The practical utility of the catalysts was demonstrated by a diverse range of amides, obtained from alcohols and nitriles, in moderate to good yields. Biomass derived platform alcohols, such as 5-HMF and furfuryl alcohol, were also tested as potential building blocks for the synthesis of biopolymers. The SO3H-catalysts revealed to be a highly efficient and environmentally friendly alternative to the conventional acid catalysts commonly used in the Ritter reaction.publishersversionpublishe

    Supercritical CO2-assisted spray drying of strawberry-like gold-coated magnetite nanocomposites in chitosan powders for inhalation

    Get PDF
    Associate Laboratory Research Unit for Green Chemistry Clean Processes and Technologies-LAQV - (UID/QUI/50006/2013) ; UCIBIO from FCT/MEC - UID/Multi/04378/2013 ; ERDF - POCI-01-0145-FEDER-007265; FCT/MEC - SFRH/BD/51584/2011; SFRH/BPD/93982/2013 ; FCT-Lisbon - IF/00915/2014Lung cancer is one of the leading causes of death worldwide. Therefore, it is of extreme importance to develop new systems that can deliver anticancer drugs into the site of action when initiating a treatment. Recently, the use of nanotechnology and particle engineering has enabled the development of new drug delivery platforms for pulmonary delivery. In this work, POXylated strawberry-like gold-coated magnetite nanocomposites and ibuprofen (IBP) were encapsulated into a chitosan matrix using Supercritical Assisted Spray Drying (SASD). The dry powder formulations showed adequate morphology and aerodynamic performances (fine particle fraction 48%-55% and aerodynamic diameter of 2.6-2.8 μm) for deep lung deposition through the pulmonary route. Moreover, the release kinetics of IBP was also investigated showing a faster release of the drug at pH 6.8, the pH of lung cancer. POXylated strawberry-like gold-coated magnetite nanocomposites proved to have suitable sizes for cellular internalization and their fluorescent capabilities enable their future use in in vitro cell based assays. As a proof-of-concept, the reported results show that these nano-in-micro formulations could be potential drug vehicles for pulmonary administration. © 2017 by the authors.publishersversionpublishe

    Age‐related white matter hyperintensities and overactive bladder: a systematic review

    Get PDF
    © 2023 The Authors. Neurourology and Urodynamics published by Wiley Periodicals LLC. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Introduction: Age-related white matter hyperintensities (ARWMHs) on brain magnetic resonance imaging have been associated with lower urinary tract symptoms/dysfunction (LUTS/LUTD), namely overactive bladder (OAB) and detrusor overactivity. We aimed to systematically review existing data on the association between ARWMH and LUTS and which clinical tools have been used for this assessment. Materials and methods: We searched PubMed/MEDLINE, Cochrane Library, and clinicaltrials.gov (from 1980 to November 2021) and considered original studies reporting data on ARWMH and LUTS/LUTD in patients of both sexes aged 50 or above. The primary outcome was OAB. We calculated the unadjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for the outcomes of interest using random-effects models. Results: Fourteen studies were included. LUTS assessment was heterogeneous and mainly based on the use of nonvalidated questionnaires. Urodynamics assessment was reported in five studies. ARWMHs were graded using visual scales in eight studies. Patients with moderate-to-severe ARWMHs were more likely to present with OAB and urgency urinary incontinence (UUI; OR = 1.61; 95% CI: 1.05-2.49, p = 0.03), I2 = 21.3%) when compared to patients with similar age and absent or mild ARWMH. Discussion and conclusions: High-quality data on the association between ARWMH and OAB is scarce. Patients with moderate to severe ARWMH showed higher levels of OAB symptoms, including UUI, when compared to patients with absent or mild ARWMH. The use of standardized tools to assess both ARWMH and OAB in these patients should be encouraged in future research.info:eu-repo/semantics/publishedVersio
    corecore