801 research outputs found

    Escape from a zero current state in a one dimensional array of Josephson junctions

    Full text link
    A long one dimensional array of small Josephson junctions exhibits Coulomb blockade of Cooper pair tunneling. This zero current state exists up to a switching voltage, Vsw, where there is a sudden onset of current. In this paper we present histograms showing how Vsw changes with temperature for a long array and calculations of the corresponding escape rates. Our analysis of the problem is based on the existence of a voltage dependent energy barrier and we do not make any assumptions about its shape. The data divides up into two temperature regimes, the higher of which can be explained with Kramers thermal escape model. At low temperatures the escape becomes independent of temperature.Comment: 4 pages 5 figure

    Troppo - A Python framework for the reconstruction of context-specific metabolic models

    Get PDF
    The surge in high-throughput technology availability for molecular biology has enabled the development of powerful predictive tools for use in many applications, including (but not limited to) the diagnosis and treatment of human diseases such as cancer. Genome-scale metabolic models have shown some promise in clearing a path towards precise and personalized medicine, although some challenges still persist. The integration of omics data and subsequent creation of context-specific models for specific cells/tissues still poses a significant hurdle, and most current tools for this purpose have been implemented using proprietary software. Here, we present a new software tool developed in Python, troppo - Tissue-specific RecOnstruction and Phenotype Prediction using Omics data, implementing a large variety of context-specific reconstruction algorithms. Our framework and workflow are modular, which facilitates the development of newer algorithms or omics data sources.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also thank the PhD scholarships funded by national funds through Fundacao para a Ciencia e Tecnologia, with references: SFRH/BD/133248/2017 (J.F.), SFRH/BD/118657/2016 (V.V.).info:eu-repo/semantics/publishedVersio

    Scaling Analysis of Magnetic Filed Tuned Phase Transitions in One-Dimensional Josephson Junction Arrays

    Full text link
    We have studied experimentally the magnetic field-induced superconductor-insulator quantum phase transition in one-dimensional arrays of small Josephson junctions. The zero bias resistance was found to display a drastic change upon application of a small magnetic field; this result was analyzed in context of the superfluid-insulator transition in one dimension. A scaling analysis suggests a power law dependence of the correlation length instead of an exponential one. The dynamical exponents zz were determined to be close to 1, and the correlation length critical exponents were also found to be about 0.3 and 0.6 in the two groups of measured samples.Comment: 4 pages, 4 figure

    Advanced engineering of third-generation lysins and formulation strategies for clinical applications

    Get PDF
    One of the possible solutions for the current antibiotic resistance crisis may be found in (often bacteriophage-derived) peptidoglycan hydrolases. The first clinical trials of these natural enzymes, coined here as first-generation lysins, are currently ongoing. Moving beyond natural endolysins with protein engineering established the second generation of lysins. In second-generation lysins, the focus lies on improving antibacterial and biochemical properties such as antimicrobial activity and stability, as well as expanding their activities towards Gram-negative pathogens. However, solutions to particular key challenges regarding clinical applications are only beginning to emerge in the third generation of lysins, in which protein and biochemical engineering efforts focus on improving properties relevant under clinical conditions. In addition, increasingly advanced formulation strategies are developed to increase the bioavailability, antibacterial activity, and half-life, and to reduce pro-inflammatory responses. This review focuses on third-generation and advanced formulation strategies that are developed to treat infections, ranging from topical to systemic applications. Together, these efforts may fully unlock the potential of lysin therapy and will propel it as a true antibiotic alternative or supplement

    Common structure in the heterogeneity of plant-matter decay

    Get PDF
    Carbon removed from the atmosphere by photosynthesis is released back by respiration. Although some organic carbon is degraded quickly, older carbon persists; consequently carbon stocks are much larger than predicted by initial decomposition rates. This disparity can be traced to a wide range of first-order decay-rate constants, but the rate distributions and the mechanisms that determine them are unknown. Here, we pose and solve an inverse problem to find the rate distributions corresponding to the decomposition of plant matter throughout North America. We find that rate distributions are lognormal, with a mean and variance that depend on climatic conditions and substrate. Changes in temperature and precipitation scale all rates similarly, whereas the initial substrate composition sets the time scale of faster rates. These findings probably result from the interplay of stochastic processes and biochemical kinetics, suggesting that the intrinsic variability of decomposers, substrate and environment results in a predictable distribution of rates. Within this framework, turnover times increase exponentially with the kinetic heterogeneity of rates, thereby providing a theoretical expression for the persistence of recalcitrant organic carbon in the natural environment

    Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

    Get PDF
    Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. Weusedlong-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L.principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type andsampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P andN:Pthroughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:NandC:PbutlowerNandN:P,andtherootshadgreater PandC:NbutlowerN,C:Pand N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes avaluable contribution to the global data pool on leaf nutrition and stoichiometry

    Femtosecond Nuclear Motion of HCl Probed by Resonant X-ray Raman Scattering in the Cl 1s Region

    Full text link
    Femtosecond dynamics are observed by resonant x-ray Raman scattering (RXS) after excitation along the dissociative Cl 1s→6ơ* resonance of gas-phase HCl. The short core-hole lifetime results in a complete breakdown of the common nondispersive behavior of soft-x-ray transitions between parallel potentials. We evidence a general phenomenon of RXS in the hard-x-ray region: a complete quenching of vibrational broadening. This opens up a unique opportunity for superhigh resolution x-ray spectroscopy beyond vibrational and lifetime limitations

    Acute hypoxia-reoxygenation and vascular oxygen sensing in the chicken embryo.

    Get PDF
    Fetal/perinatal hypoxia is one of the most common causes of perinatal morbidity and mortality and is frequently accompannied by vascular dysfunction. However, the mechanisms involved have not been fully delineated. We hypothesized that exposure to acute hypoxia-reoxygenation induces alterations in vascular O2 sensing/signaling as well as in endothelial function in the chicken embryo pulmonary artery (PA), mesenteric artery (MA), femoral artery (FA), and ductus arteriosus (DA). Noninternally pipped 19-day embryos were exposed to 10% O2 for 30 min followed by reoxygenation with 21% O2 or 80% O2 Another group was constantly maintained at 21% O2 or at 21% O2 for 30 min and then exposed to 80% O2 Following treatment, responses of isolated blood vessels to hypoxia as well as endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside and forskolin) relaxation were investigated in a wire myograph. Hypoxia increased venous blood lactate from 2.03 ± 0.18 to 15.98 ± 0.73 mmol/L (P < 0.001) and reduced hatchability to 0%. However, ex vivo hypoxic contraction of PA and MA, hypoxic relaxation of FA, and normoxic contraction of DA were not significantly different in any of the experimental groups. Relaxations induced by acetylcholine, sodium nitroprusside, and forskolin in PA, MA, FA, and DA rings were also similar in the four groups. In conclusion, exposure to acute hypoxia-reoxygenation did not affect vascular oxygen sensing or reactivity in the chicken embryo. This suggests that direct effects of acute hypoxia-reoxygenation on vascular function does not play a role in the pathophysiology of hypoxic cardiovascular injury in the perinatal period

    Developmental changes in mesenteric artery reactivity in embryonic and newly hatched chicks

    Get PDF
    At birth, the intestine becomes the sole site for nutrient absorption requiring a dramatic increase in blood flow. The vascular changes accompanying this transition have been partly characterized in mammals. We investigated, using wire myography, the developmental changes in chick mesenteric artery (MA) reactivity. Rings of the MA from 15-day (E15) and 19-day (E19) chicken embryos (total incubation 21 days) as well as non-fed 0–3-h-old (NH3h) and first-fed 1-day-old (NH1d) newly hatched chicks contracted in response to KCl, norepinephrine (NE), U46619, and endothelin (ET)-1 and relaxed in response to acetylcholine (ACh), sodium nitroprusside (SNP), and forskolin indicating the presence of electro- and pharmaco-mechanical coupling as well as cGMP- and cAMP-mediated relaxation. In ovo development and transition to ex ovo life was accompanied by alterations in the response of the MAs, but a different developmental trajectory was observed for each reactivity pathway tested. Thus, the contractile efficacy of KCl underwent a linear increase (E15 < E19 < NH3h < NH1d). The efficacy of NE and U46619 increased in ovo, but not ex ovo (E15 < E19 = NH3h = NH1d) and the efficacy of ET-1 peaked at E19 (E15 < E19 > NH3h = NH1d). The relaxations elicited by ACh (endothelium-dependent), SNP, and forskolin did not undergo significant developmental changes. In conclusion, the ability of chick MAs to constrict in response to pharmacological stimuli increases during the embryonic period, but no dramatic changes are induced by hatching or the first feeding. Maturation of vasodilator mechanisms precedes that of vasoconstrictor mechanisms. Alterations of the delicate balance between vasoconstrictors and vasodilators may play an important role in perinatal intestinal diseases
    corecore