23 research outputs found
Ladder approximation to spin velocities in quantum wires
The spin sector of charge-spin separated single mode quantum wires is
studied, accounting for realistic microscopic electron-electron interactions.
We utilize the ladder approximation (LA) to the interaction vertex and exploit
thermodynamic relations to obtain spin velocities. Down to not too small
carrier densities our results compare well with existing quantum Monte-Carlo
(QMC) data. Analyzing second order diagrams we identify logarithmically
divergent contributions as crucial which the LA includes but which are missed,
for example, by the self-consistent Hartree-Fock approximation. Contrary to
other approximations the LA yields a non-trivial spin conductance. Its
considerably smaller computational effort compared to numerically exact
methods, such as the QMC method, enables us to study overall dependences on
interaction parameters. We identify the short distance part of the interaction
to govern spin sector properties.Comment: 6 pages, 6 figures, to appear in Physical Review
Dynamic correlations of the Coulomb Luttinger liquid
The dynamic density response function, form-factor, and spectral function of
a Luttinger liquid with Coulomb electron-electron interaction are studied with
the emphasis on the short-range electron correlations. The Coulomb interaction
changes dramatically the density response function as compared to the case of
the short-ranged interaction. The form of the density response function is
smoothing with time, and the oscillatory structure appears. However, the
spectral functions remain qualitatively the same. The dynamic form-factor
contains the -peak in the long-wave region, corresponding to one-boson
excitations. Besides, the multi-boson-excitations band exists in the
wave-number region near to . The dynamic form-factor diverges at the
edges of this band, while the dielectric function goes to zero there, which
indicates the appearance of a soft mode. We develop a method to analyze the
asymptotics of the spectral functions near to the edges of the
multi-boson-excitations band.Comment: 11 pages, 3 figures, submitted to PR
Involvement of protein tyrosine kinases in activation of human eosinophils by platelet-activating factor
Activation of human eosinophils by platelet-activating factor (PAF) involves multiple signal transduction pathways. Among these, protein kinase C has been demonstrated both to mediate respiratory burst and to suppress an alternative pathway of activation of respiratory burst and arachidonic acid metabolism in eosinophils. We utilized inhibitors of protein tyrosine kinases (PTK) to elucidate the role of PTK in PAF-induced activation of eosinophils. Eosinophils were isolated from peripheral blood of atopic donors and stimulated with PAF in the absence or presence of broad-spectrum PTK inhibitors – genistein or lavendustin A; an inhibitor of mitogen-activated protein (MAP) kinase activation – tyrphostin AG126; or an inhibitor of Janus kinase 2 (Jak2) – tyrphostin B42 (AG490). PAF induced superoxide anion (O2−·.) generation, leukotriene C4 (LTC4) release, intracellular calcium ion mobilization and tyrosine phosphorylation of multiple eosinophil proteins in a concentration-dependent manner. All of these responses were concentrationdependently inhibited by genistein; lavendustin A also exhibited potent inhibition of PAF-induced LTC4 release. AG126 had no effect on either O2−·. generation or LTC4 release, while AG490 inhibited both responses, albeit less effectively than genistein. We conclude that PAF activates PTK in human eosinophils and that this signalling pathway is involved in eliciting respiratory burst and leukotriene production. The specific PTK(s) involved are unknown but may include Jak2
Effect of finite-temperature local field corrections on many-body properties of quantum wires
73.21.Hb Quantum wires, 71.10.Ca Electron gas, Fermi gas, 71.45.Gm Exchange, correlation, dielectric and magnetic response functions, plasmons,