3 research outputs found
Long term vibration data analysis from wind turbine -statistical vs energy based features
Wind turbines are operating in varying conditions. Therefore, the recorded signal is highly nonstationary. The typical approach for damage detection in long term data is based on the energy and spectral analysis. This method, suffer for several drawbacks, especially for the signals with high contamination. Thus, the alternative approach is the application of statistical parameters that may indicate the damage. In order to indicate the frequency band corresponding to the damage the proper statistics are used. In this paper, the well know spectral kurtosis and another statistic are applied to the long-term vibration data from wind turbine. Their performance is compared with the standard energy based methods. It is showed that selectors are able to track the damage development and distinguish between healthy and unhealthy case
Mobile based vibration monitoring and its application to road quality monitoring in deep underground mine
Road quality is an important issue in everyday life for all car owners. This issue seems to be critically important in underground mines, where LHD machines are used for material transport. One of the biggest problems for LHD operation is relatively quick tires degradation. One of possible reasons might be road surface quality, indeed. However, driver's skills as well as ways of machine operation (loading, acceleration, breaking...) might also play a crucial role. Nowadays, many of machines are equipped with onboard monitoring system that allows to monitor basic parameters (speed, torque, temperatures, pressures etc.) at some predefined components. To complete the picture, we propose to use proposed already (but not for mining applications) vibration measurement for road roughness evaluation. To measure vibration acceleration is relatively easy task (we used simple smartphone here), unfortunately method of parametrization and concluding about road quality is still a challenge in mining case. In this paper we have presented a short communication related to first experimental work and some ideas how to deal with this problem using statistical tools for signal modeling
Mobile based vibration monitoring and its application to road quality monitoring in deep underground mine
Road quality is an important issue in everyday life for all car owners. This issue seems to be critically important in underground mines, where LHD machines are used for material transport. One of the biggest problems for LHD operation is relatively quick tires degradation. One of possible reasons might be road surface quality, indeed. However, driver's skills as well as ways of machine operation (loading, acceleration, breaking...) might also play a crucial role. Nowadays, many of machines are equipped with onboard monitoring system that allows to monitor basic parameters (speed, torque, temperatures, pressures etc.) at some predefined components. To complete the picture, we propose to use proposed already (but not for mining applications) vibration measurement for road roughness evaluation. To measure vibration acceleration is relatively easy task (we used simple smartphone here), unfortunately method of parametrization and concluding about road quality is still a challenge in mining case. In this paper we have presented a short communication related to first experimental work and some ideas how to deal with this problem using statistical tools for signal modeling