4 research outputs found

    Serum RANKL, osteoprotegerin (OPG), and RANKL/OPG ratio in nephrotic children

    Get PDF
    Receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG) play key roles in the pathogenesis of glucocorticoid-induced osteoporosis (GIO). The aim of our study was to determine whether the cumulative glucocorticoid dose (CGCS) in children with idiopathic nephrotic syndrome (INS) has any effect on the concentration of serum RANKL and OPG and the RANKL/OPG ratio. The study population consisted of 90 children with INS, aged 3–20 years, who were treated with GCS. These children were divided into two groups according to the CGCS: low (L) <1 g/kg body weight (BW) and high (H) ≥1 g/kg BW, respectively. The control group (C) consisted of 70 healthy children. RANKL concentration was observed to be significantly higher and OPG significantly lower in INS children than in the reference group: 0.21 (range 0.01–1.36) versus 0.15 (0–1.42) pmol/l (p < 0.05), respectively, and 3.76 (1.01–7.25) versus 3.92 (2.39–10.23) pmol/l (p < 0.05), respectively. The RANKL/OPG ratio was significantly higher in INS children (p < 0.01). The concentration of RANKL, similar to the RANKL/OPG ratio, was significantly higher in Group H children than in Group L children: 0.46 (0.02–1.36 ) versus 0.19 (0.01–1.25) (p < 0.01) and 0.14 (0.01–0.71) versus 0.05 (0.002–0.37) (p < 0.01), respectively. The concentration of OPG was similar in both groups. There was a positive correlation between CGCS and the concentration of sRANKL as well as the RANKL/OPG ratio (in both cases r = 0.33, p < 0.05). Based on these results, we suggest that long-term exposure to GCS results in a dose-dependent increase in serum RANKL concentration and the RANKL/OPG ratio, but not in the level of serum OPG

    Steroid-Resistant Nephrotic Syndrome Caused by <i>NUP93</i> Pathogenic Variants

    No full text
    Background: Although steroid therapy is a standard of care for nephrotic syndrome treatment, 15–20% of patients do not respond to it. Finding the genetic background is possible in >10% of steroid-resistant nephrotic syndrome (SRNS) cases. Variants in genes encoding nuclear pore complex proteins are a novel cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent studies suggest NUP93 variants to be a significant cause of paediatric onset SRNS. The clinical data on certain variants and disease history are still very limited. Methods and results: We report the SRNS case of a 12-year-old boy with two detected NUP93 variants, which are pathogenic and possibly pathogenic. The onset of the disease was early and severe. The patient was admitted to the paediatric nephrology department due to nephrotic-range proteinuria and hypoalbuminemia with a long medical history of steroid and non-steroid immunosuppressive treatment. The genetic panel targeting 50 genes, clinically relevant for nephrotic syndrome, was performed. The only gene which was found to be affected by mutations, namely c.2326C>T and c.1162C>T, respectively, was NUP93. Conclusions: NUP93 variants are rarely identified as causes of SRNS. Clinical data are of utmost importance to establish the standard of care for SRNS patients suffering from this genetic disfunction. This is the first case of a heterozygous patient with the c.2326C>T and c.1162C>T variants and confirmed clinical history of the SRNS described so far. Our data suggest the clinical relevance of the c.1162C>T variant
    corecore