3 research outputs found

    Dynamics of physicochemical parameter concentrations in the Graniczna Woda stream water

    No full text
    The paper presents variability of physicochemical parameter concentrations and determined the potential and chemical status of water in the Graniczna Woda stream, the right bank tributary to the Stoła River. The stream catchment area of 41.5 km2 is covered mainly by forests. A lowland stream flows through part of the Upper Silesia Industrial Region through three districts. A biological-mechanical municipal sewage treatment plant operates in the area of Miasteczko Śląskie, as well as a factory sewage treatment plant of Zinc Plant. The data base used in the papers consisted of the results obtained from the Provincial Inspectorate of the Environmental Protection in Katowice, monthly analyses of water samples collected in the years 2009–2013 in the control-measurement points located by the mouth of the Stoła River. 34 physicochemical indices were analyzed in the paper. Statistically significant upward trends were determined over the period of investigations for values of electrical conductivity (EC), total suspended solids, Cl, SO4, NO2-N and Zn in the stream water. Statistically significant downward trend was noted for total hardness. It was stated that both the potential and chemical status o the stream water were below good. Exceeded limit values for quality class II determined for oxygen and organic indices (chemical oxygen demand COD-Mn, total organic carbon TOC), salinity (EC, SO4, Cl, Ca, hardness) and biogenic indices and substances particularly harmful for aquatic environment (Zn, Tl) as well as exceeded allowable heavy metal concentrations may evidence a constant inflow of heavy metals to the aquatic environment of the Graniczna Woda stream from municipal and industrial sewage

    Variously Prepared Zeolite Y as a Modifier of ANFO

    No full text
    In the presented research, we investigated Ammonium Nitrate Fuel Oil (ANFO), with the addition of variously modified zeolite Y as an attractive explosive. Analysis of both blasting tests and thermodynamic models of blasting properties led to the conclusion that the addition of zeolite Y enhanced the detonation properties of such prepared ANFO via the growth of the detonation pressure, temperature, compression energy, and heat of the explosion. Generally, the modification of ANFO with variously prepared zeolite Y also reduced the volume of (COx + NOx) post-blast fumes. Furthermore, it was found that the ANFO’s velocity of detonation (VOD) could be controlled by the choice of the way of zeolite Y modification. Namely, for zeolite Y without Mg, as well as Mg-Y prepared via the impregnation method, the VOD rose. The opposite effect was observed when ANFO was modified with Mg-Y, obtained from the deposition of Mg over zeolite Y via the ultrasonic-assisted procedure
    corecore