15 research outputs found

    Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation

    No full text
    Chokeberry fruits can be treated as very rich sources of bioactive compounds and, therefore, have a very high biological value. The purpose of the study was to compare selected chemical and physical properties of chokeberry fruits, both from organic and conventional cultivations located near Cracow. Chemical composition of the fruit, content of the antioxidant activity, bioactive compounds, and ultra-weak luminescence were analyzed. It was proved that chokeberry fruits are rich in bioactive compounds and that ecological crops produce fruits with a higher level of such compounds. Chokeberry fruits from organic farms were proven to have a higher content of bioactive ingredients and antioxidant activity than in traditionally grown fruits. The total amount of sugars was ambiguous because both the highest and the lowest values were determined in fruits from traditional cultivation. Photon emissivity determined on the basis of ultra-weak luminescence was higher in fruits from organic cultivations. A very high correlation was also found between the photon emissivity and the content of polyphenols as well as the antioxidant activity

    The Influence of Vacuum Impregnation on Nutritional Properties of Fluidized Bed Dried Kale (Brassica oleracea L. Var. Acephala) Leaves

    No full text
    The aim of the work was to assess the possibility of obtaining high bioactivity dried kale using a vacuum impregnation as the preliminary processing before the drying. Kale leaves underwent vacuum impregnation in freshly squeezed onion juice and in sodium chloride solution utilising the following impregnation process parameters: At the vacuum stage, 6 kPa reduced pressure for 1 min, dosing the impregnating solution and keeping the sample under vacuum for 2 min, and then 6 min in impregnating solution at atmospheric pressure. Fluidized bed drying of kale was conducted using inert polypropylene balls, utilising a drying air temperature in a range from 70 to 130 °C. The drying kinetics were described, and the dehydrated product’s quality was assessed, on the basis of these selected characteristics: The content of chlorophylls, polyphenols and carotenoids, and antioxidant activity measured with ABTS+, dry matter, water activity and colour. It was determined that protective influence of vacuum impregnation before fluidized bed drying was seen only in the case of using temperatures of 90 and 110 °C. The highest content of bioactive components in dried kale was obtained in the case of using onion juice impregnation and drying at 110 °C

    Chemical Characteristics of Ethanol and Water Extracts of Black Alder (Alnus glutinosa L.) Acorns and Their Antibacterial, Anti-Fungal and Antitumor Properties

    No full text
    The aim of this study was to identify polyphenolic compounds contained in ethanol and water extracts of black alder (Alnus glutinosa L.) acorns and evaluate their anti-cancer and antimicrobial effects. The significant anti-cancer potential on the human skin epidermoid carcinoma cell line A431 and the human epithelial cell line A549 derived from lung carcinoma tissue was observed. Aqueous and ethanolic extracts of alder acorns inhibited the growth of mainly Gram-positive microorganisms (Staphylococcus aureus, Bacillus subtilis, Streptococcus mutans) and yeast-like fungi (Candida albicans, Candida glabrata), as well as Gram-negative (Escherichia coli, Citrobacter freundii, Proteus mirabilis, Pseudomonas aeruginosa) strains. The identification of polyphenols was carried out using an ACQUITY UPLC-PDA-MS system. The extracts were composed of 29 compounds belonging to phenolic acids, flavonols, ellagitannins and ellagic acid derivatives. Ellagitannins were identified as the predominant phenolics in ethanol and aqueous extract (2171.90 and 1593.13 mg/100 g DM, respectively) The results may explain the use of A. glutinosa extracts in folk medicine

    Effects on Quality Properties of Pork Sausages Enriched with Sea Buckthorn (Hippophae rhamnoides L.)

    No full text
    The present study was aimed at evaluating the effect of a sea buckthorn (Hippophae rhamnoides L.) fruit extract on selected quality properties of cooked sausages. The ethanolic extract of sea buckthorn fruit (SBE) incorporated at the highest level (3%) significantly affected the pH, weight losses, and instrumental color parameters of sausages. The SBE deteriorated organoleptic properties of sausages like juiciness, overall appearance, texture, and taste; however the sausages manufactured with 1.5% SBE were scored higher for color and almost the same as control for smell acceptance. Textural parameters like hardness, springiness, gumminess, and chewiness of cooked sausages decreased along with SBE addition. After 28 days of storage, the samples with 1.5% SBE addition were as springy, hard, and gummy as the control ones. Incorporation of SBE increased the shelf life of sausages. The highest inhibition of lipid oxidation was observed in the samples manufactured with 1.5% SBE. The SBE significantly improved the microbial qualities of sausages

    Effect of Preparation and Storage Conditions on Physical and Chemical Properties of Puree, Puree Juices and Cloudy Juices Obtained from Pumpkin with Added Japanese Quince and Strawberries

    No full text
    When evaluated in terms of taste, smell or active ingredients, pumpkin in itself is not very attractive as a raw material. Hence it seems recommendable to blend pumpkin with other fruits. The pumpkin chosen for the experiments was of the variety ‘Karowita’. The aim of the study was to compare the physical and chemical properties of pumpkin samples based on different storage conditions. Pumpkin puree, puree juice and cloudy juices containing Japanese quince and strawberries were evaluated for their physical and chemical properties initially and after three months storage at temperatures of 4 °C and 30 °C. Cloudy juices were prepared with pectolytic preparation. The extract dry matter in all the samples was at a similar level. Puree and puree juice had considerably higher viscosity than cloudy juices. The highest quantities of bioactive compounds were detected in slightly processed samples (puree, puree juice and cloudy juices) stored at 4 °C . Increased content of polyphenols was observed in puree and puree juice after storage. However, in the remaining samples, there was observed a decrease in the content of the compounds. A considerable decrease in carotenoids took place in samples subjected to pressing, where the amount of assayed carotenoids in puree was 5.24 mg/100 g fresh matter (FM), 4.15 mg/100 g FM in puree juice, and 0.18-0.47 mg/100 g FM in cloudy juices. The pressing also caused a significant decrease in colour parameters. Three months of storage showed markedly decreased contents of carotenoids and vitamin C

    Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality

    No full text
    Due to the dynamic growth of the cold brew coffee market, the aim of this study was to identify and characterize main bioactive and aromatic compounds that may be helpful for quality control during the production of popular beverages. Using headspace solid-phase microextraction and GC-MS and LC-MS analysis, prepared cold brew coffee extracts were investigated and compared with different green bean roasting profiles and varying extraction temperature and time parameters. In terms of quantitative composition, the study showed that cold brew coffees are an exceptional source of chlorogenic acid. Therefore, they may change consumers purchasing decisions on the beverage market and establish a new and natural substitute for controversial energy drinks. The analyses confirm the possibility of producing a beverage with increased chlorogenic acid content above 900 mg/L or at a similar level of 400–500 mg/L with caffeine, which may be important on an industrial scale due to the possibility of diversifying beverage production. Furthermore, aroma compounds were presented as markers responsible for fruity or caramel–roasted-almond notes and changes in their concentrations according to the recipe were also presented. The best option for cold brew coffee production appears to be beans roasted in the 210–220 °C temperature range

    Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality

    No full text
    Due to the dynamic growth of the cold brew coffee market, the aim of this study was to identify and characterize main bioactive and aromatic compounds that may be helpful for quality control during the production of popular beverages. Using headspace solid-phase microextraction and GC-MS and LC-MS analysis, prepared cold brew coffee extracts were investigated and compared with different green bean roasting profiles and varying extraction temperature and time parameters. In terms of quantitative composition, the study showed that cold brew coffees are an exceptional source of chlorogenic acid. Therefore, they may change consumers purchasing decisions on the beverage market and establish a new and natural substitute for controversial energy drinks. The analyses confirm the possibility of producing a beverage with increased chlorogenic acid content above 900 mg/L or at a similar level of 400–500 mg/L with caffeine, which may be important on an industrial scale due to the possibility of diversifying beverage production. Furthermore, aroma compounds were presented as markers responsible for fruity or caramel–roasted-almond notes and changes in their concentrations according to the recipe were also presented. The best option for cold brew coffee production appears to be beans roasted in the 210–220 °C temperature range

    Rheological, Chemical and Physical Characteristics of Golden Berry (Physalis peruviana L.) after Convective and Microwave Drying

    No full text
    Studies on methods for fixing foods (with a slight loss of bioactive compounds) and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols and antioxidant activity as well as colour were also examined. The study showed that Physalis is a difficult material for drying. The best results were obtained using microwave drying at a power of 480 W. Physalis fruit microwave-dried by this method is characterized by higher resistance to compression than the fruit dried by convection. Dried fruit obtained in this way was characterized by higher contents of bioactive compounds, better antioxidant properties, and at the same time the lowest water activity

    Effect of Vacuum Impregnation with Apple-Pear Juice on Content of Bioactive Compounds and Antioxidant Activity of Dried Chokeberry Fruit

    No full text
    Food technology seeks ways to preserve products while maintaining high bioactive properties. Therefore, an attempt was made to assess the effect of the process of impregnation with apple-pear juice and the drying process on the content of bioactive compounds in chokeberry fruit. Chokeberry fruits were subjected to impregnation with apple-pear juice at three levels of vacuum pressure, 4, 6, and 8 kPa; then, they were dried using microwave-vacuum technology. The water activity of the obtained products, the content of fructose, glucose, sorbitol, and polyphenolic compounds, and antioxidant activity were determined. A total of 20 polyphenolic compounds were identified in the fruits and the obtained products (seven anthocyanins, six flavonols, four phenolic acids, and three flavan-3-ols). Preliminary processing, which consisted of introducing the juice ingredients into tissue of the chokeberry fruit, resulted in increased content of bioactive compounds. Moreover, a positive effect of impregnation on the antioxidant stability of the fruit after drying was noted. Water activity in the obtained products showed their microbiological safety. Impregnation at 4 kPa vacuum pressure proved to be the most desirable; in such conditions, the best product in terms of the content of bioactive compounds was obtained

    Phenolic Composition Stability and Antioxidant Activity of Sour Cherry Liqueurs

    No full text
    The aim of the study was to evaluate changes of phenolic and anthocyanin contents, antioxidant activity, aroma compounds and color of sour cherry liqueurs with and without sugar during 6 months of storage at temperatures of 15 °C and 30 °C. Contents of phenolic compounds (HPLC, UPLC-MS) and antiradical activity (ABTS) changes were measured. Color changes were measured by an objective method (ColorQuest XE). During storage fluctuations of phenolic compounds and antioxidant activity content were observed. The content of substances which react with Folin-Ciocalteu reagent was comparable before and after 24 weeks. During the 24 weeks of storage, the highest average antioxidant activity against ABTS radicals was shown by sour cherry liqueurs without sugar, stored at 15 °C. Quicker degradation of anthocyanins was observed in liqueurs without sugar, stored at 30 °C (t1/2—5.9 weeks in liqueurs with sugar and 6.6 weeks in liqueurs without sugar). Better stability of red color was observed in liqueurs with sugar, stored at 15 °C. The content of the dominant aroma compound, benzaldehyde, increased during storage. Long-term storage and sugar addition decreases color attributes but increases organoleptic value without of great influence on antioxidant activity. Studies on a half-year period of liqueur storage showed that their characteristic features are almost unchanged if stored at 15 °C and without sugar added, but organoleptic properties were better in samples stored at 30 °C
    corecore