382 research outputs found

    Radiative and collisional processes in translationally cold samples of hydrogen Rydberg atoms studied in an electrostatic trap

    Full text link
    Supersonic beams of hydrogen atoms, prepared selectively in Rydberg-Stark states of principal quantum number nn in the range between 25 and 35, have been deflected by 90∘^\circ, decelerated and loaded into off-axis electric traps at initial densities of ≈106\approx 10^6 atoms/cm−3^{-3} and translational temperatures of 150 mK. The ability to confine the atoms spatially was exploited to study their decay by radiative and collisional processes. The evolution of the population of trapped atoms was measured for several milliseconds in dependence of the principal quantum number of the initially prepared states, the initial Rydberg-atom density in the trap, and the temperature of the environment of the trap, which could be varied between 7.5 K and 300 K using a cryorefrigerator. At room temperature, the population of trapped Rydberg atoms was found to decay faster than expected on the basis of their natural lifetimes, primarily because of absorption and emission stimulated by the thermal radiation field. At the lowest temperatures investigated experimentally, the decay was found to be multiexponential, with an initial rate scaling as n−4n^{-4} and corresponding closely to the natural lifetimes of the initially prepared Rydberg-Stark states. The decay rate was found to continually decrease over time and to reach an almost nn-independent rate of more than (1 ms)−1^{-1} after 3 ms. To analyze the experimentally observed decay of the populations of trapped atoms, numerical simulations were performed which included all radiative processes, i.e., spontaneous emission as well as absorption and emission stimulated by the thermal radiation. These simulations, however, systematically underestimated the population of trapped atoms observed after several milliseconds by almost two orders of magnitude, although they reliably predicted the decay rates of the remaining atoms in the trap. TheComment: 36 pages, 18 figure

    Slow and velocity-tunable beams of metastable He2_2 by multistage Zeeman deceleration

    Full text link
    Metastable helium molecules (He2∗_2^*) have been generated by striking a discharge in a supersonic expansion of helium gas from a pulsed valve. When operating the pulsed valve at room temperature, 77K, and 10K, the mean velocity of the supersonic beam was measured to be 1900m/s, 980m/s, and 530m/s, respectively. A 55-stage Zeeman decelerator operated in a phase-stable manner was then used to further reduce the beam velocity and tune it in the range between 100 and 150m/s. The internal-state distribution of the decelerated sample was established by photoionization spectroscopy.Comment: 10 pages, 7 figure

    Fluorescence-lifetime-limited trapping of Rydberg helium atoms on a chip

    Full text link
    Metastable (1s)(2s) 3S1^3{\rm S}_1 helium atoms produced in a supersonic beam were excited to Rydberg-Stark states (with nn in the 27−3027-30 range) in a cryogenic environment and subsequently decelerated by, and trapped above, a surface-electrode decelerator. In the trapping experiments, the Rydberg atoms were brought to rest in 75~μ\mus and over a distance of 33~mm and kept stationary for times ttrapt_{\mathrm{trap}} in the 0−5250-525~μ\mus range, before being re-accelerated for detection by pulsed field ionization. The use of a home-built valve producing short gas pulses with a duration of about 20~μ\mus enabled the reduction of losses arising from collisions with atoms in the trailing part of the gas pulses. Cooling the decelerator to 4.7~K further suppressed losses by transitions induced by blackbody radiation and by collisions with atoms desorbing from the decelerator surface. The main contribution (60\%) to the atom loss during deceleration is attributed to the escape out of the decelerator moving traps of atoms having energies higher than the trap saddle point, spontaneous emission and collisions with atoms in the trailing part of the gas pulses causing each only about 20\% of the atom loss. At 4.7 K, the atom losses in the trapping phase of the experiments were found to be almost exclusively caused by spontaneous emission and the trap lifetimes were found to correspond to the natural lifetimes of the Rydberg-Stark states. Increasing the temperature to 100 K enhanced the trap losses by transitions stimulated by blackbody radiation

    Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide

    Get PDF
    The coherent interaction between ensembles of helium Rydberg atoms and microwave fields in the vicinity of a solid-state co-planar waveguide is reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38 GHz, have been studied for states with principal quantum numbers in the range 30 - 35 by selective electric-field ionization. An experimental apparatus cooled to 100 K was used to reduce effects of blackbody radiation. Inhomogeneous, stray electric fields emanating from the surface of the waveguide have been characterized in frequency- and time-resolved measurements and coherence times of the Rydberg atoms on the order of 250 ns have been determined.Comment: 5 pages, 5 figure

    Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms

    Full text link
    The ability to characterize static and time-dependent electric fields in situ is an important prerequisite for quantum-optics experiments with atoms close to surfaces. Especially in experiments which aim at coupling Rydberg atoms to the near field of superconducting circuits, the identification and subsequent elimination of sources of stray fields is crucial. We present a technique that allows the determination of stray-electric-field distributions (Fxstr(r⃗),Fystr(r⃗),Fzstr(r⃗))(F^\text{str}_\text{x}(\vec{r}),F^\text{str}_\text{y}(\vec{r}),F^\text{str}_\text{z}(\vec{r})) at distances of less than 2 mm2~\text{mm} from (cryogenic) surfaces using coherent Rydberg-Stark spectroscopy in a pulsed supersonic beam of metastable 1s12s1 1S01\text{s}^12\text{s}^1~{}^{1}S_{0} helium atoms. We demonstrate the capabilities of this technique by characterizing the electric stray field emanating from a structured superconducting surface. Exploiting coherent population transfer with microwave radiation from a coplanar waveguide, the same technique allows the characterization of the microwave-field distribution above the surface.Comment: 6 pages, 4 figure

    Measuring the dispersive frequency shift of a rectangular microwave cavity induced by an ensemble of Rydberg atoms

    Full text link
    In recent years the interest in studying interactions of Rydberg atoms or ensembles thereof with optical and microwave frequency fields has steadily increased, both in the context of basic research and for potential applications in quantum information processing. We present measurements of the dispersive interaction between an ensemble of helium atoms in the 37s Rydberg state and a single resonator mode by extracting the amplitude and phase change of a weak microwave probe tone transmitted through the cavity. The results are in quantitative agreement with predictions made on the basis of the dispersive Tavis-Cummings Hamiltonian. We study this system with the goal of realizing a hybrid between superconducting circuits and Rydberg atoms. We measure maximal collective coupling strengths of 1 MHz, corresponding to 3*10^3 Rydberg atoms coupled to the cavity. As expected, the dispersive shift is found to be inversely proportional to the atom-cavity detuning and proportional to the number of Rydberg atoms. This possibility of measuring the number of Rydberg atoms in a nondestructive manner is relevant for quantitatively evaluating scattering cross sections in experiments with Rydberg atoms

    Vacuum-ultraviolet frequency-modulation spectroscopy

    Full text link
    Frequency-modulation (FM) spectroscopy has been extended to the vacuum-ultraviolet (VUV) range of the electromagnetic spectrum. Coherent VUV laser radiation is produced by resonance-enhanced sum-frequency mixing (νVUV=2νUV+ν2\nu_{\mathrm{VUV}}=2\nu_{\mathrm{UV}}+\nu_2) in Kr and Xe using two near-Fourier-transform-limited laser pulses of frequencies νUV\nu_{\mathrm{UV}} and ν2\nu_2. Sidebands generated in the output of the second laser (ν2\nu_2) using an electro-optical modulator operating at the frequency νmod\nu_{\mathrm{mod}} are directly transfered to the VUV and used to record FM spectra. Demodulation is demonstrated both at νmod\nu_{\mathrm{mod}} and 2νmod2\nu_{\mathrm{mod}}. The main advantages of the method are that its sensitivity is not reduced by pulse-to-pulse fluctuations of the VUV laser intensity, compared to VUV absorption spectroscopy is its background-free nature, the fact that its implementation using table-top laser equipment is straightforward and that it can be used to record VUV absorption spectra of cold samples in skimmed supersonic beams simultaneously with laser-induced-fluorescence and photoionization spectra. To illustrate these advantages we present VUV FM spectra of Ar, Kr, and N2_2 in selected regions between 105000cm−1^{-1} and 122000cm−1^{-1}.Comment: 23 pages, 10 figure

    Metrology of Rydberg states of the hydrogen atom

    Full text link
    We present a method to precisly measure the frequencies of transitions to high-nn Rydberg states of the hydrogen atom which are not subject to uncontrolled systematic shifts caused by stray electric fields. The method consists in recording Stark spectra of the field-insensitive k=0k=0 Stark states and the field-sensitive k=±2k=\pm2 Stark states, which are used to calibrate the electric field strength. We illustrate this method with measurements of transitions from the 2 s(f=0 and 1)2\,\text{s}(f=0\text{ and } 1) hyperfine levels in the presence of intentionally applied electric fields with strengths in the range between 0.40.4 and 1.6 1.6\,Vcm−1^{-1}. The slightly field-dependent k=0k=0 level energies are corrected with a precisely calculated shift to obtain the corresponding Bohr energies (−cRH/n2)\left(-cR_{\mathrm{H}}/n^2\right). The energy difference between n=20n=20 and n=24n=24 obtained with our method agrees with Bohr's formula within the 10 10\,kHz experimental uncertainty. We also determined the hyperfine splitting of the 2 s2\,\text{s} state by taking the difference between transition frequencies from the 2 s(f=0 and 1)2\,\text{s}(f=0 \text{ and }1) levels to the n=20,k=0n=20,k=0 Stark states. Our results demonstrate the possibility of carrying out precision measurements in high-nn hydrogenic quantum states

    Multistage Zeeman deceleration of metastable neon

    Full text link
    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580m/s to final velocities as low as 105m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for 20^{20}Ne and 22^{22}Ne.Comment: 16 pages, 15 figure

    Measurements of AMPs in stratum corneum of atopic dermatitis and healthy skin-tape stripping technique

    Get PDF
    Abstract Decreased levels of antimicrobial peptides (AMPs) in atopic dermatitis (AD) have previously been reported and have been linked to the increased susceptibility to skin infections found in AD patients. This study intents to identify AMPs: hBD-2, hBD-3, RNase7, psoriasin and LL-37 in AD patients and healthy controls, and determine concentrations in consecutive depths of the outer most skin layers. Tape stripping was used on lesional and non-lesional skin. From each skin site, 35 consecutive tape strips were collected and pooled in groups of 5. Commercially available ELISA kits were used to determine AMP concentration in stratum corneum samples. hBD-2, hBD-3, RNase7 and psoriasin were identified in stratum corneum samples. hBD-3-level was markedly higher in AD non-lesional skin compared to healthy controls, and a similar trend was observed for RNase7. Most AMPs were distributed evenly through 35 tape strips, implying a homogeneous distribution of antimicrobial defense in the outer most skin layers. The findings indicate that AD patients may not suffer from a general baseline deficiency in AMPs, and that the innate immune defense is present throughout the stratum corneum, both insights of importance for understanding the role of AMPs in AD
    • …
    corecore