21 research outputs found

    Level variations in speech: Effect on masking release in hearing-impaired listeners

    Get PDF
    Acoustic speech is marked by time-varying changes in the amplitude envelope that may pose difficulties for hearing-impaired listeners. Removal of these variations (e.g., by the Hilbert transform) could improve speech reception for such listeners, particularly in fluctuating interference. Léger, Reed, Desloge, Swaminathan, and Braida [(2015b). J. Acoust. Soc. Am. 138, 389–403] observed that a normalized measure of masking release obtained for hearing-impaired listeners using speech processed to preserve temporal fine-structure (TFS) cues was larger than that for unprocessed or envelope-based speech. This study measured masking release for two other speech signals in which level variations were minimal: peak clipping and TFS processing of an envelope signal. Consonant identification was measured for hearing-impaired listeners in backgrounds of continuous and fluctuating speech-shaped noise. The normalized masking release obtained using speech with normal variations in overall level was substantially less than that observed using speech processed to achieve highly restricted level variations. These results suggest that the performance of hearing-impaired listeners in fluctuating noise may be improved by signal processing that leads to a decrease in stimulus level variations.National Institutes of Health (U.S.) (R01DC000117

    Abnormal intelligibility of speech in competing speech and in noise in a frequency region where audiometric thresholds are near-normal for hearing-impaired listeners

    No full text
    The ability to identify syllables in the presence of speech-shaped noise and a single-talker background was measured for 18 normal-hearing (NH) listeners, and for eight hearing-impaired (HI) listeners with near-normal audiometric thresholds for frequencies up to 1.5 kHz and a moderate to severe hearing loss above 2 kHz. The stimulus components were restricted to the low-frequency (≤1.5 kHz) region, where audiometric thresholds were classified clinically as normal or near normal for all listeners. Syllable identification in a speech background was measured as a function of the fundamental-frequency (F0) difference between competing voices (ranging from 1 semitone to ~1 octave). HI listeners had poorer syllable intelligibility than NH listeners in all conditions. Intelligibility decreased by about the same amount for both groups when the F0 difference between competing voices was reduced. The results suggest that the ability to identify speech against noise or an interfering talker was disrupted in frequency regions of near-normal hearing for HI listeners, but that the ability to benefit from the tested F0 differences was not disrupted. This deficit was not predicted by the elevated absolute thresholds for speech in speech, but it was for speech in noise. It may result from supra-threshold auditory deficits associated with ageing

    The role of recovered envelope cues in the identification of temporal-fine-structure speech for hearing-impaired listeners

    Get PDF
    Narrowband speech can be separated into fast temporal cues [temporal fine structure (TFS)], and slow amplitude modulations (envelope). Speech processed to contain only TFS leads to envelope recovery through cochlear filtering, which has been suggested to account for TFS-speech intelligibility for normal-hearing listeners. Hearing-impaired listeners have deficits with TFS-speech identification, but the contribution of recovered-envelope cues to these deficits is unknown. This was assessed for hearing-impaired listeners by measuring identification of disyllables processed to contain TFS or recovered-envelope cues. Hearing-impaired listeners performed worse than normal-hearing listeners, but TFS-speech intelligibility was accounted for by recovered-envelope cues for both groups

    Consonant identification in noise using Hilbert-transform temporal fine-structure speech and recovered-envelope speech for listeners with normal and impaired hearing

    Get PDF
    Consonant-identification ability was examined in normal-hearing (NH) and hearing-impaired (HI) listeners in the presence of steady-state and 10-Hz square-wave interrupted speech-shaped noise. The Hilbert transform was used to process speech stimuli (16 consonants in a-C-a syllables) to present envelope cues, temporal fine-structure (TFS) cues, or envelope cues recovered from TFS speech. The performance of the HI listeners was inferior to that of the NH listeners both in terms of lower levels of performance in the baseline condition and in the need for higher signal-to-noise ratio to yield a given level of performance. For NH listeners, scores were higher in interrupted noise than in steady-state noise for all speech types (indicating substantial masking release). For HI listeners, masking release was typically observed for TFS and recovered-envelope speech but not for unprocessed and envelope speech. For both groups of listeners, TFS and recovered-envelope speech yielded similar levels of performance and consonant confusion patterns. The masking release observed for TFS and recovered-envelope speech may be related to level effects associated with the manner in which the TFS processing interacts with the interrupted noise signal, rather than to the contributions of TFS cues per se.National Institute on Deafness and Other Communication Disorders (U.S.) (Award R01DC000117
    corecore