1,212 research outputs found
Ultrafast magnetophotoconductivity of semi-insulating gallium arsenide
The speed of opto-electronic switches is increased or decreased by the application of a magnetic field. This is achieved by inducing a carrier drift toward or away from the semiconductor surface, resulting in the enhancement or suppression of surface recombination. We establish that surface recombination plays a major role in determining the speed of the opto-electronic switch
Gravitational waves in general relativity: XIV. Bondi expansions and the ``polyhomogeneity'' of \Scri
The structure of polyhomogeneous space-times (i.e., space-times with metrics
which admit an expansion in terms of ) constructed by a
Bondi--Sachs type method is analysed. The occurrence of some log terms in an
asymptotic expansion of the metric is related to the non--vanishing of the Weyl
tensor at Scri. Various quantities of interest, including the Bondi mass loss
formula, the peeling--off of the Riemann tensor and the Newman--Penrose
constants of motion are re-examined in this context.Comment: LaTeX, 28pp, CMA-MR14-9
Hardy-Carleman Type Inequalities for Dirac Operators
General Hardy-Carleman type inequalities for Dirac operators are proved. New
inequalities are derived involving particular traditionally used weight
functions. In particular, a version of the Agmon inequality and Treve type
inequalities are established. The case of a Dirac particle in a (potential)
magnetic field is also considered. The methods used are direct and based on
quadratic form techniques
Rendezvous of Two Robots with Constant Memory
We study the impact that persistent memory has on the classical rendezvous
problem of two mobile computational entities, called robots, in the plane. It
is well known that, without additional assumptions, rendezvous is impossible if
the entities are oblivious (i.e., have no persistent memory) even if the system
is semi-synchronous (SSynch). It has been recently shown that rendezvous is
possible even if the system is asynchronous (ASynch) if each robot is endowed
with O(1) bits of persistent memory, can transmit O(1) bits in each cycle, and
can remember (i.e., can persistently store) the last received transmission.
This setting is overly powerful.
In this paper we weaken that setting in two different ways: (1) by
maintaining the O(1) bits of persistent memory but removing the communication
capabilities; and (2) by maintaining the O(1) transmission capability and the
ability to remember the last received transmission, but removing the ability of
an agent to remember its previous activities. We call the former setting
finite-state (FState) and the latter finite-communication (FComm). Note that,
even though its use is very different, in both settings, the amount of
persistent memory of a robot is constant.
We investigate the rendezvous problem in these two weaker settings. We model
both settings as a system of robots endowed with visible lights: in FState, a
robot can only see its own light, while in FComm a robot can only see the other
robot's light. We prove, among other things, that finite-state robots can
rendezvous in SSynch, and that finite-communication robots are able to
rendezvous even in ASynch. All proofs are constructive: in each setting, we
present a protocol that allows the two robots to rendezvous in finite time.Comment: 18 pages, 3 figure
Motion of Isolated bodies
It is shown that sufficiently smooth initial data for the Einstein-dust or
the Einstein-Maxwell-dust equations with non-negative density of compact
support develop into solutions representing isolated bodies in the sense that
the matter field has spatially compact support and is embedded in an exterior
vacuum solution
Control theory for principled heap sizing
We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach
Sobolev Inequalities for Differential Forms and -cohomology
We study the relation between Sobolev inequalities for differential forms on
a Riemannian manifold and the -cohomology of that manifold.
The -cohomology of is defined to be the quotient of the space
of closed differential forms in modulo the exact forms which are
exterior differentials of forms in .Comment: This paper has appeared in the Journal of Geometric Analysis, (only
minor changes have been made since verion 1
Stability Of contact discontinuity for steady Euler System in infinite duct
In this paper, we prove structural stability of contact discontinuities for
full Euler system
Byzantine Gathering in Networks
This paper investigates an open problem introduced in [14]. Two or more
mobile agents start from different nodes of a network and have to accomplish
the task of gathering which consists in getting all together at the same node
at the same time. An adversary chooses the initial nodes of the agents and
assigns a different positive integer (called label) to each of them. Initially,
each agent knows its label but does not know the labels of the other agents or
their positions relative to its own. Agents move in synchronous rounds and can
communicate with each other only when located at the same node. Up to f of the
agents are Byzantine. A Byzantine agent can choose an arbitrary port when it
moves, can convey arbitrary information to other agents and can change its
label in every round, in particular by forging the label of another agent or by
creating a completely new one.
What is the minimum number M of good agents that guarantees deterministic
gathering of all of them, with termination?
We provide exact answers to this open problem by considering the case when
the agents initially know the size of the network and the case when they do
not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2.
More precisely, for networks of known size, we design a deterministic algorithm
gathering all good agents in any network provided that the number of good
agents is at least f+1. For networks of unknown size, we also design a
deterministic algorithm ensuring the gathering of all good agents in any
network but provided that the number of good agents is at least f+2. Both of
our algorithms are optimal in terms of required number of good agents, as each
of them perfectly matches the respective lower bound on M shown in [14], which
is of f+1 when the size of the network is known and of f+2 when it is unknown
The critical dimension for a 4th order problem with singular nonlinearity
We study the regularity of the extremal solution of the semilinear biharmonic
equation \bi u=\f{\lambda}{(1-u)^2}, which models a simple
Micro-Electromechanical System (MEMS) device on a ball B\subset\IR^N, under
Dirichlet boundary conditions on . We complete
here the results of F.H. Lin and Y.S. Yang \cite{LY} regarding the
identification of a "pull-in voltage" \la^*>0 such that a stable classical
solution u_\la with 0 exists for \la\in (0,\la^*), while there is
none of any kind when \la>\la^*. Our main result asserts that the extremal
solution is regular provided while is singular () for , in which case
on the unit ball, where
and .Comment: 19 pages. This paper completes and replaces a paper (with a similar
title) which appeared in arXiv:0810.5380. Updated versions --if any-- of this
author's papers can be downloaded at this http://www.birs.ca/~nassif
- …