9 research outputs found

    Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves

    Get PDF
    Annona cherimola (Cherimoya) and Annona atemoya (Atemoya) are tropical plants known for their edible fruit. Scientific data suggest that their leaves, used in traditional medicine in the form of teas or infusions without evidence of toxicity, contain several bioactive compounds. However, only Annona muricata among all the Annona species is currently used in the nutraceutical field, and its dried leaves are marketed for tea preparation. In this work, we explored the nutraceutical potential of Atemoya and Cherimoya leaves, by evaluating their chemical profile and functional properties. Phytochemical analyses showed large amounts of phenolic compounds, in particular proanthocyanidins, and identified 18 compounds, either flavonoids or alkaloids. Concerning biological activity, we found antioxidative properties correlated with polyphenols, and antiproliferative activity against HeLa and HepG2 cell lines correlated with alkaloids. The obtained results demonstrate the potential use of Annona cherimola leaves for the preparation of dietary supplements aimed to promote the physiological redox balance. Moreover, the varietal comparison suggests that two commercial cultivars (Campas and White) and the local Torre 1, better suit this purpose. On the other hand, among the studied cultivars, Campas and Torre 1 are also the richest in alkaloids and, in consideration of the anti-proliferative properties of their extracts, dietary supplements based on these cultivars might also have chemo-preventive effects

    Chemical profile and biological activity of cherimoya (Annona cherimola Mill.) and atemoya (Annona atemoya) leaves

    Get PDF
    Annona cherimola (Cherimoya) and Annona atemoya (Atemoya) are tropical plants known for their edible fruit. Scientific data suggest that their leaves, used in traditional medicine in the form of teas or infusions without evidence of toxicity, contain several bioactive compounds. However, only Annona muricata among all the Annona species is currently used in the nutraceutical field, and its dried leaves are marketed for tea preparation. In this work, we explored the nutraceutical potential of Atemoya and Cherimoya leaves, by evaluating their chemical profile and functional properties. Phytochemical analyses showed large amounts of phenolic compounds, in particular proanthocyanidins, and identified 18 compounds, either flavonoids or alkaloids. Concerning biological activity, we found antioxidative properties correlated with polyphenols, and antiproliferative activity against HeLa and HepG2 cell lines correlated with alkaloids. The obtained results demonstrate the potential use of Annona cherimola leaves for the preparation of dietary supplements aimed to promote the physiological redox balance. Moreover, the varietal comparison suggests that two commercial cultivars (Campas and White) and the local Torre 1, better suit this purpose. On the other hand, among the studied cultivars, Campas and Torre 1 are also the richest in alkaloids and, in consideration of the anti-proliferative properties of their extracts, dietary supplements based on these cultivars might also have chemo-preventive effects

    A biostimulant based on seaweed (Ascophyllum Nodosum and Laminaria digitata) and yeast extracts mitigateswater stress effects on tomato (Solanum lycopersicum l.)

    Get PDF
    Water deficit is one of the most problematic stressors worldwide. In this context, the use of biostimulants represents an increasingly ecological practice aimed to improve crop tolerance and mitigate the negative effects on the productivity. Here, the effect derived from the foliar application of ERANTHIS®®, a biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts, was tested on tomato plants grown under mild water-stress conditions. The potential stress mitigation action was evaluated by monitoring morphometric (fresh weight and dry matter content), physiological (stem water potential) and biochemical (ROS scavenger enzymes activity, proline, abscisic acid, hydrogen peroxide and photosynthetic pigment content) parameters closely related to the occurrence and response to stress at both flowering and fruit-set timing. In general, we observed that plants grown under drought conditions and treated with the biostimulant had a lower amount of ABA, and MDA and proline correlated to a lower activity of ROS scavenger enzymes compared to untreated plants. These data, together with the higher stem water potential and photosynthetic pigment levels recorded for the treated plants, suggest that ERANTHIS®® may mitigate water stress effects on tomato

    Geomagnetic field (Gmf) and plant evolution: investigating the effects of Gmf reversal on arabidopsis thaliana development and gene expression

    Get PDF
    One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution

    Alkaline soil primes the recovery from drought in Populus nigra plants through physiological and chemical adjustments

    No full text
    : Perennial plants are frequently exposed to severe and prolonged drought, and when the balance between water transport and transpirational demand is compromised trees are in danger of embolism formation. To maintain the physiological balance, plants can rely on mechanisms to quickly recover the lost xylem hydraulic capacity and reduce the prolonged impact on photosynthetic activity upon rehydration. Among factors helpful for plants to sustain acclimation and adaptation responses to drought and promote recovery, maintaining an optimal nutritional status is crucial for plant survival. This study aimed to investigate the physiological and biochemical responses under drought and recovery of Populus nigra plants grown in soil with impaired nutrient bioavailability obtained by adding calcium oxide (CaO) to the substrate. Although the CaO treatment did not affect plant growth, in well-watered conditions, treated poplars displayed an impaired inorganic ions profile in tissues. Under drought, although CaO-treated and untreated plants showed similar physiological responses, the former closed the stomata earlier. During water stress relief, the CaO-treated poplars exhibited a faster stomatal opening and a higher capacity to restore xylem hydraulic conductivity compared to not-treated plants, probably due to the higher osmolyte accumulation during drought. The content of some inorganic ions (e.g, Ca2+ and Cl-) was also higher in the xylem sap collected from stressed CaO-treated plants, thus contributing to increase the osmotic gradient necessary for the recovery. Taken together, our results suggest that CaO treatment promotes a faster and more efficient plant recovery after drought due to a modulation of ions homeostasis
    corecore