12 research outputs found
Laser cooling of a magnetically guided ultra cold atom beam
We report on the transverse laser cooling of a magnetically guided beam of
ultra cold chromium atoms. Radial compression by a tapering of the guide is
employed to adiabatically heat the beam. Inside the tapered section heat is
extracted from the atom beam by a two-dimensional optical molasses
perpendicular to it, resulting in a significant increase of atomic phase space
density. A magnetic offset field is applied to prevent optical pumping to
untrapped states. Our results demonstrate that by a suitable choice of the
magnetic offset field, the cooling beam intensity and detuning, atom losses and
longitudinal heating can be avoided. Final temperatures below 65 microkelvin
have been achieved, corresponding to an increase of phase space density in the
guided beam by more than a factor of 30.Comment: 9 pages, 4 figure
Continuous atom laser with Bose-Einstein condensates involving three-body interactions
We demonstrate, through numerical simulations, the emission of a coherent
continuous matter wave of constant amplitude from a Bose-Einstein Condensate in
a shallow optical dipole trap. The process is achieved by spatial control of
the variations of the scattering length along the trapping axis, including
elastic three body interactions due to dipole interactions. In our approach,
the outcoupling mechanism are atomic interactions and thus, the trap remains
unaltered. We calculate analytically the parameters for the experimental
implementation of this CW atom laser.Comment: 11 pages, 4 figure
A proposal for continuous loading of an optical dipole trap with magnetically guided ultra cold atoms
The capture of a moving atom by a non-dissipative trap, such as an optical
dipole trap, requires the removal of the excessive kinetic energy of the atom.
In this article we develop a mechanism to harvest ultra cold atoms from a
guided atom beam into an optical dipole trap by removing their directed kinetic
energy. We propose a continuous loading scheme where this is accomplished via
deceleration by a magnetic potential barrier followed by optical pumping to the
energetically lowest Zeeman sublevel. We theoretically investigate the
application of this scheme to the transfer of ultra cold chromium atoms from a
magnetically guided atom beam into a deep optical dipole trap. We discuss the
realization of a suitable magnetic field configuration. Based on numerical
simulations of the loading process we analyze the feasibility and efficiency of
our loading scheme.Comment: 10 pages, 5 figure
A slow gravity compensated Atom Laser
We report on a slow guided atom laser beam outcoupled from a Bose-Einstein
condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser
beam can be controlled by compensating the gravitational acceleration and we
reach residual accelerations as low as 0.0027 g. The outcoupling mechanism
allows for the production of a constant flux of 4.5x10^6 atoms per second and
due to transverse guiding we obtain an upper limit for the mean beam width of
4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper
limit for the beam quality parameter is M^2=2.5. We demonstrate the potential
of the long interrogation times available with this atom laser beam by
measuring the trap frequency in a single measurement. The small beam width
together with the long evolution and interrogation time makes this atom laser
beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics
Atom lasers: production, properties and prospects for precision inertial measurement
We review experimental progress on atom lasers out-coupled from Bose-Einstein
condensates, and consider the properties of such beams in the context of
precision inertial sensing. The atom laser is the matter-wave analog of the
optical laser. Both devices rely on Bose-enhanced scattering to produce a
macroscopically populated trapped mode that is output-coupled to produce an
intense beam. In both cases, the beams often display highly desirable
properties such as low divergence, high spectral flux and a simple spatial mode
that make them useful in practical applications, as well as the potential to
perform measurements at or below the quantum projection noise limit. Both
devices display similar second-order correlations that differ from thermal
sources. Because of these properties, atom lasers are a promising source for
application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references
and figure
Laserkühlung eines magnetisch geführten ultrakalten Atomstrahls
This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates.
First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed.
Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 µK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.In dieser Dissertation werden zwei komplementäre Methoden für die Laserkühlung eines magnetisch geführten, ultrakalten Atomstrahls untersucht. Kombiniert könnten diese Methoden den Ausgangspunkt für eine, möglicherweise sogar kontinuierliche, Hochdurchsatzproduktion von Bose-Einstein-Kondensaten darstellen.
Als erstes wird ein Mechanismus vorgestellt, mit dem sich ultrakalte Atome aus einem magnetisch geführten Atomstrahl in eine optische Dipolfalle umladen lassen. Es wird ein kontinuierliches Ladeschema beschrieben, das die Dissipation der gerichteten kinetischen Energie eines eingefangenen Atoms durch Abbremsung an einer magnetischen Potentialbarriere, gefolgt von optischen Umpumpen in den energetisch niedrigsten Zeeman-Zustand, ermöglicht. Die Anwendung dieses Ladeschemas auf den Transfer von ultrakalten Chromatomen aus einem magnetisch geführten Atomstrahl in eine tiefe optische Dipolfalle wird mittels numerischer Simulationen untersucht. Basierend auf den Ergebnissen der theoretischen Untersuchungen wird die Machbarkeit und die zu erwartende Effizienz des Ladeschemas, sowie die Realisierung einer geeigneten Magnetfeldkonfiguration analysiert.
Als zweites wurde die transversale Laserkühlung eines magnetisch geführten ultrakalten Chromatomstrahls im Experiment untersucht. Hierfür wurde der Atomstrahl durch eine Verjüngung der magnetischen Strahlführung radial komprimiert und so adiabatisch erwärmt. Inmitten des verjüngten Strahlabschnitts wurde senkrecht zum Strahl eine zweidimensionale optische Molasse erzeugt, welche Wärme aus dem Strahl extrahierte, was zu einem signifikanten Anstieg der atomaren Phasenraumdichte führte. Durch das Anlegen eines magnetischen Offsetfeldes wird optischen Pumpen in magnetisch nicht einschließbare Zustände verhindert. Unsere Ergebnisse zeigen, das Atomverluste und eine longitudinale Aufheizung durch geeignet gewählte Werte des magnetisches Offsetfeldes, der Kühlstrahlintensität und -verstimmung verhindert werden können. Es konnten Endtemperaturen unter 65 µK erreicht werden, was einem Anstieg der Phasenraumdichte im geführten Strahl um mehr als einen Faktor 30 entspricht