37 research outputs found

    Euro+Med-Checklist Notulae, 13

    Get PDF
    This is the thirteenth of a series of miscellaneous contributions, by various authors, where hitherto unpublished data relevant to both the Med-Checklist and the Euro+Med (or Sisyphus) projects are presented. This instalment deals with the families Amaryllidaceae (incl. Alliaceae), Apocynaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Crassulaceae, Cucurbitaceae, Gramineae, Hydrocharitaceae, Iridaceae, Labiatae, Liliaceae, Malvaceae, Meliaceae, Myrtaceae, Orobanchaceae, Oxalidaceae, Papaveraceae, Pittosporaceae, Primulaceae (incl. Myrsinaceae), Ranunculaceae, Rhamnaceae, Rubiaceae, Solanaceae and Umbelliferae. It includes new country and area records and taxonomic and distributional considerations for taxa in Allium, Anthemis, Atriplex, Centaurea, Chasmanthe, Chenopodium, Delphinium, Digitaria, Elodea, Erigeron, Eucalyptus, Hypecoum, Leptorhabdos, Luffa, Malvaviscus, Melia, Melica, Momordica, Nerium, Oxalis, Pastinaca, Phelipanche, Physalis, Pittosporum, Salvia, Scorzoneroides, Sedum, Sesleria, Silene, Spartina, Stipa, Tulipa and Ziziphus, new combinations in Cyanus, Lysimachia, Rhaponticoides and Thliphthisa, and the reassessment of a replacement name in Sempervivum

    Accuracy and Survival Outcomes after National Implementation of Sentinel Lymph Node Biopsy in Early Stage Endometrial Cancer

    Full text link
    Background. Sentinel lymph node (SLN) biopsy has recently been accepted to evaluate nodal status in endometrial cancer at early stage, which is key to tailoring adjuvant treatments. Our aim was to evaluate the national implementation of SLN biopsy in terms of accuracy to detect nodal disease in a clinical setting and oncologic outcomes according to the volume of nodal disease. Patients and Methods. A total of 29 Spanish centers participated in this retrospective, multicenter registry including patients with endometrial adenocarcinoma at preoperative early stage who had undergone SLN biopsy between 2015 and 2021. Each center collected data regarding demographic, clinical, histologic, therapeutic, and survival characteristics. Results. A total of 892 patients were enrolled. After the surgery, 12.9% were suprastaged to FIGO 2009 stages III-IV and 108 patients (12.1%) had nodal involvement: 54.6% macrometastasis, 22.2% micrometastases, and 23.1% isolated tumor cells (ITC). Sensitivity of SLN biopsy was 93.7% and false negative rate was 6.2%. After a median follow up of 1.81 years, overall surivial and disease-free survival were significantly lower in patients who had macrometastases when compared with patients with negative nodes, micrometastases or ITC. Conclusions. In our nationwide cohort we obtained high sensitivity of SLN biopsy to detect nodal disease. The oncologic outcomes of patients with negative nodes and low-volume disease were similar after tailoring adjuvant treatments. In total, 22% of patients with macrometastasis and 50% of patients with micrometastasis were at low risk of nodal metastasis according to their preoperative risk factors, revealing the importance of SLN biopsy in the surgical management of patients with early stage EC

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    Get PDF
    Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr(-1) towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr(-1). Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    Get PDF
    Publisher Copyright: © 2022 The Author(s). Published by IOP Publishing Ltd.Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr-1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr-1. Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future.Peer reviewe

    Ecological barriers mediate spatiotemporal shifts of bird communities at a continental scale

    Get PDF
    This study was supported by the Swiss National Science Foundation (grant P2BEP3_195232) and by the Academy of Finland (project 323527 and project 329251).Species' range shifts and local extinctions caused by climate change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, and elevation, can influence a community's ability to shift in response to climate change. Yet, ecological barriers are rarely considered in climate change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980s and their compositional best match in the 2010s and modeled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coastlines and elevation having the strongest influence. Our results underscore the relevance of combining ecological barriers and community shift projections for identifying the forces hindering community adjustments under global change. Notably, due to (macro)ecological barriers, communities are not able to track their climatic niches, which may lead to drastic changes, and potential losses, in community compositions in the future.Publisher PDFPeer reviewe

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    Get PDF
    Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr(-1) towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr(-1). Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future

    Typification of the name Papaver hybridum L. (Papaveraceae)

    Full text link
    The typification of the Linnaean name Papaver hybridum is discussed. A specimen in the Burser Herbarium at Uppsala is designated as lectotype

    Michele Lojacono-Pojero’s Centuriae in the herbaria and archives in Geneva

    Full text link
    Lojacono, well known as the author of a Flora sicula, offered for sale and distributed various exsiccata. In particular, he prepared 7 Centuriae of Plantae siculae rariores (1879-1884) and 4 Centuriae of Plantae italicae selectae (1885-1888). Swiss botanists (Barbey, Boissier, Burnat) were among his first customers. From their legacy, printed, mostly autographic inventories of all but one of these Centuriae (with only the second Italian Centuria missing) came to the archives of the Conservatoire botanique in Geneva, some in two different versions. These rare documents have been dated with the aid of mail stamps and of correspondence kept in the same archives, and transcripts of all of them are provided
    corecore