112 research outputs found

    Clostridium difficile – A possible zoonotic link

    Get PDF

    Antibiotikaresistens

    Get PDF

    Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    Get PDF
    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Conclusions: Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.</jats:p

    The diversity of inducible and constitutively expressed <em>erm</em>(C) genes and association to different replicon types in staphylococci plasmids

    Get PDF
    The aim of this study was to analyze the diversity of the macrolide resistance gene, erm(C) in relation to structural alterations affecting the gene expression. In addition, the association of erm(C) to mobile genetic elements (MGEs) in staphylococci mainly from Danish pigs was investigated. In total, 78 erythromycin-resistant isolates were screened for erm(C) by PCR. The erm(C) genes incl. the upstream regulatory region were sequenced and the expression types were characterized phenotypically (agar diffusion test) and genotypically (sequence analysis). Phylogenetic analysis of erm(C) was compared with structural alterations affecting the gene expression. Plasmids carrying erm(C) from seven selected isolates were fully or partially sequenced. Thirty-seven isolates were shown to be erm(C) positive and erm(C) from pigs were all constitutively expressed, mainly caused by different sized deletions (118, 111, 107, 70, 66, 16 and 3 bp) in the regulatory region. Duplication (63 bp) and substitutions were also found to cause a constitutive phenotype. Only one horse isolate had an inducible expression type. Phylogenetic analysis showed that structural alterations have happened in different erm(C) allele groups and not only in one group. Furthermore erm(C) was found mainly on plasmids (~2.4–8 kb) and gene sequence types correlated with plasmid replication (rep) gene types. One erm(C) type was linked to an IS257 element able to circularize. In conclusion, structural alterations giving rise to constitutive expression of erm(C) have happened several times in the evolution of erm(C). Interestingly, the diversity of erm(C) appears to be linked to the plasmid type or MGE carrying the gene
    • …
    corecore